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PREFACE

The title of this velume is an abbreviation for the more

properly descriptive one: “Topies in the theory of approxi-,
mation”, Tt iz a brief essay in a fleld on which an enevelopediny)

night be written. On the personal side, it is an AcCOUt
of eertain aspeets and ramifications of a problem to ’hwh T
was introduced at an carly stage, and which has givefe d}l ‘ection
to my reading and study ever since. $ x\

One day about tweniy years ago I was \admi‘tted to the
study of Professor Landau, seeking ddvme\fi’q to a subject
for a thesis. After some preliminaryy mqumes a8 to my
cxperience and preferences, he. hdnded e a long sheet of
paper, and directed nle‘&‘gdtakelrhotes ‘as_he enumerated some
dozen or fifteen topics in Valmus ’heldéyot %nal\'m and numhber
theory, with a few words of exlﬂanatlou of each. He told
me to think about them to\ a few days, and to sclect one
of them, or any other Lnrnb\k"m of my own choosing, with the
Slngle regervation th&EN“should 2ot prove Fermat's theorem,
an injnnetion whicl(h have observed faithfully. Guided partly
by natural mclmatlon. perhaps, and partly by recollection
of a course gnmethods of approximation which 1 had taken
with Professdr” Bocher a few years earlier, I committed myself
(0 one s’f\ he topies which Landau had proposed, an investi-
gatioy‘ \0f the degree of approximation with which a given
dntinuons funetion can be represented by a polynomial of
ér}ven degree. When I reperted my choice, he said meditative-
Iy, in words which I remember vividly in substance, if not
perfectly as to idiom: “Das ist ein schanes Thema, ich bencide
Sie um das Thema ... Nein, ich beneide Sie nicht, aber es
ist ein wnnderschéines Thema!™ It is in fact a problem which
admits a surprising variety of interesting developments on
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iv PREFACE

its own account, and offers a natural avenne of approach
to a number of ficlds of still broader importance.

Although delayed in its completion by the conflict of other
duties, the following exposition is substantially in the form
in which it was projected at the time of the Colloguium
lectures in 1925, and presented in abstract in the leetures
themselves. Omne section, on the vector analysis of function
gpace, originally desipned for inclusion in the Col]oquium{
hag meanwhile been published separately instead. The sect,imﬁ
which had Dbeen written at full length in September, {1925
— practically the whole of the first chapter, partéué‘f the
seeond, and most of the third — have been left \iiiiéhanged,
except in minor details. The elementary accoym\flof Legendre
geries in Chapter I, for example, was written hefdre the appear-
ance of the admirable aiticle on the subjest by M. H. Stone
in vol. 27 of the Annals of Mathematies/ O few other articles
published since 1925 are mentiongﬂ\ifl the text.

For the most part, however, citations of the literature have
been omitted. . The HreparaHQUst, o really adequate bibliog-
raphy would have been a(task of such magnitude as to
delay the publication indefinitely. References to some of
the most important p'{‘pers of not too recent date are con-
tained in my thesis.)(Gottingen, 1911) and in my report
on The generch theory of approximation by polynomials and
trigonometricygiwms in vol. 27 of the Builetin of the American
h'Iathematicg,i"Societg'. Among pnblications in beok - form
suppleme;n}ing the material given here, mention should be
made&f"Bore}’s Legons sur. les fonctions de variables réelles
ety Z& développemments en séries de polynomes, de la Vallde

L. (Boussin’s Lecons swr Uapproximation des fonctions dune
\ ) variable réelle, and 8, Bernstein’s Lecons sur les propriétés
extrémales et la meillewre approximation des fonctions analytiques
dune variable réelle, all appearing in the Borel series. As
to the content of these lectures themselves, there are many
points where it would be difficult now to recall the original
sources either of specific resulis and proofs or of suggestions
ag to method. To the extent that the work is my own, some
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parts have been published previously, tn my thesis, in various
articles in the Transactions of the American Mathematical
Society, and elsewhere; other parts are now offered in print
for the first time. Numerons detailed acknowledgments, net
repeated here, have heen made in the pages of the earlier
publications. En connection with Chapter 1V, reference should
still be made to the work of Faber on trigonometrie inter-
polation in his memoir’ Ifder stetige Funktionen (sweite Ab-

hondlung) in vol. 69 of the Mathematische Anmnalen. My &
acquaintance with the statistical formmnlas discussed in Chapter V».‘

which might have come from any of a variety of sources, \xa‘s
in fact mostly obtained from Yule's Introduction fo t}«z\,’ﬁa -
ory of Statistics. The lemma on which the method of Chiapter ITE
depends is derived from the most important single\memoir in
the literature on degree of approximation, 8. Bernstein's epoch-
making prize essay of 19412, with which the 1)t£ebem, woerk also
has other points of contact. And in cmibluqmn it should be
said that my study of the problem haa Ween dominated from
the beginning not 011{') O E.’}‘g"f% Sfif my own teachers,
but also by the writings of Lebeague aud de la Vallée Poussin.

October 1, 1929
.\\ DuxHaM JACKSOX
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CHAPTER 1

CONTINUOUS FUNCTIONS

Introduction
Weierstrass first enunciated the theorem that an arbitrary

A

N

'\

continnons function can be approximately represented by 3. f

polynomial with any assigned degree of accuracy. The»”

theorem may be stated with precision in the folltmmg

If flx) is a given function, continwous for a <z ﬂ&b\, and
if € is a given posiltive quantily, it is always possibledo define
a polynomial P{x) such that Y,

&
|f@)—Pz)| <& ~\

Jor a <<z =<bh

To Weierstrass is due §oume LQ!‘J:é gpondmg theorem on
approximation by means o trlgonhméme SUms:

If flx) is a given function oj‘pe'rzod 2, continuvous for
all veal values of x, and ejf"Q\z\s @ given positive quantily, it
is always possible fo deﬁne\’a.ftrigmometric sum T (x) such that

. lf(.;r')—1"(.:*3)1(6

Jor all real va{u&t of T.
By a polynontic! is meant an expression of the form

2

QO
amtmztaodEt - Fane®

AN

‘expressmn will be said to represent a polynomial of
the nth degree, not only when @, is different from zere, but,
in distinetion frem the usage which prevails in some parts
of algebra, alse when a,=—0. That is to say, the words
“polyuomial of the nth degree” will be used in place of the
longer expression ‘‘polynomial of the nth degree at most™.
Even the case of identical vanishing is not excluded. A frig-
1 1
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2 THE THEORY OF AFPROXIMATION

onometric swm, or more specifically a trigonometric swm of
the nth order, is an expression of the form

do— e 208 x oz €08 20+ o F @y COS R
4y sin 2+ by sin 2 - . 4-by sin wr.

The definition is inclusive once mere; the simultaneous vanish-
ing of a. and b, is not ruled out. A

These two types of approximating function show a persisteut
and fundamental similarity in their behavior, on gwbig:h
differences of more or less significance are from time(tp"time
superimposed. Simplicity of statement and proof~will favor
semetimes one and sometimes the other. K7 N

It is readily seen that the number nf.t-erﬁrs" required to
yield a specified degree of approximatidm) or, under the
converse aspect, the degree of approxifiation attainable with
a specified number of terms, will \lae’ﬁ;efétted to the properties
of continuity of £(x). It is the fuirpose of the next pages
to trace out this relationship ,il.f&s’ome detail.

www.dbraulibr:p.t:y‘,érg,jn
r. Approximationlby trigonometric sums

For a considerable “wddy of results, the following theorem
may be regarded a§ fundamental:

THEOREM I-.‘If () is a function of period 2, such that

NO ) —fla)! < ap—m |

i :'\m'
J or S:?:%a'l values of @ and a, 1 being o constant, there will
sregi\Jor every positive integral value of n a trigonometric

R \mm Tw(x), of the nth order, such that, for all veal values of o,

Fo—T@ s B

H

where K is an absolute constant, depending neither on x, nor

OR R, nor on L, nor on any further specification with regard
fo the function f(z).

In the yroof of the theorem, use will be made of the
following :



I. CONTINGOUS FUNCTIONS 3
LeMMa. IF m ds a posifive integer, the expression

sin (ma/2)
sint (x/2)

is a trigonometric sum in x, of order 2m—2,
Because of the identity

€08 P COS g = %[cos (p+gyx-+cos(p—qx]

S

/

.\\\

2 AN
N 3

and the others of similar type, it is seen at once that the"‘:
product of two irigonometric sums, of orders », and.xs
respectively, is a trlgonumetnc sum of order , + ., 00t is
sufficient for the purpose in hand, therefore, to, veeall any
one of the numerous proofs of the well-known fagh ‘that

9.\

sin®(mz/2) _ 1—cosmal“
sin®(z/2) 1—co%‘

is a trigonometrie swungfdﬂpg@mr@rglrﬁ square will then
be a sum of order 2m—2. Thé fact that 1 —cosmzx is

equal to the produet of 1-—~cosa:“by a trigonowmetric sum of
order m -1 appears, for ex@nple, from the identities

1—cosmax = %[cos;m—— cos(p+1)x],

eos px— cos (p -k l}m

;\ = (1—cosx) — i [cos(g—1)xr—2cosgx

\\ - +coslg+ 1)z,
cos(q~i,)'x-—2 cosqx-}— cos(g+ 1z
\3 = [eos(g — )&+ cos(qg-+Dz] — 2cosgx
4 = 2 cosqx cosx — 2 ¢08qx
= —2¢cosqx(l —ecosx).

To proceed with the proof of the theerem, let

£i0 m

4 2

m sinw

Fplat) = [

1*



4 THE THEORY OF APPROXIMATION

where m is any positive integer, and 7., is defined by the

equation
km rﬂ Fo(wydu.

By means of the substitution x4+ 2w« == v, the expression
for I,(x) is transformed into

~

LT 70 Fu|  0—a)|dv. R

Both factors in the last integrand have the period Q;rf w1th
regard to v, so that the value of the integral is m:tchanged
if the interval of integration is replaced by any ot&r interval
of length 27, 1In partlcular o

In(x) = J’em fh F ) Fn [4@— :c)] dv.

The expression Fy [i{v—2)], byi\he Lemma above, is a
trigonometrie sum of order 2m A 2"in {v--7x), and may be
regarded as wmmmﬂtmlgm}g@ﬁ the same order in x,
with coefficients which argmgonometnc functions of »v. The
whole integrand is a trigonometric sum in x with coefficients
which are continuoug. ‘iu\mtmns of v, and Z,(z) therefore is
a trigonometric snn\\of order 2m — 2 in %, with constant co-
efficients. The proof that this sum is an approxzimate rep-
resentation ©f7f(x), when m is large, will be based on the
original re,!ﬁresentation of I,(x).

Let the”eqnation defining /.. be wmultiplied by Amf(z).
Since (x) is a constant as far as u is concerned, it may be
pla&e\d under the sign of mtegratlon, go that

\’ )" S&) = hn 2 f(x) Fo (w) due.
Consequenily
{2
I (@) — fl2) = kmfm [Fle+2w)—fF(2)] Fnlw) du.
By the hypothesis imposed on f(x),

fet2y—f @) = 24]u.



I. CONTINUOUS FUNCTIONS b

Hence
12
@)~/ @] < 20k | [} Fnli) d,

or, since Fy, (u) and |u| Fn {#) are even functions of u,

J:, w Fon (1) dut

| Im () —f ()| S 44 Dm 4 Fon () doe =24 .. )
J:’. !Fm(u)du

To anticipate the conclusion of the proof, Iet

l:'
12 1 4
sm t sini ¢
€ ——Iﬂ t, € = l --—-dt @

These quantities are merely numerical constants, Is is d’e\dl
that each integrand approaches a limit for ¢ = 0, an\fi that
the improper integral defining ¢ is convergent.

By the use of the fact that 0 < sinu <7 % f(}r,(}}é” w= /2,
and the substitution mwu = {, it is recogmged fhat

4 \ MIf2
f Fm(u)du‘““*br‘ smmu du = 1 I sm;_

wvﬁfﬁ aullbra: y org in
A

= Slﬂ
i4 NS
N\
On the other hand, (sin )/ \d}creases monotonically as u
goes from 0 to 7/2, so Q}@

siny __ sin(#/8) 2 1 T

SInAKS) Tl
U

w T OEER) T a’ sinu 2
throughout the m'a‘}rwr of this interval. Hence

4 i 4
s upmdu < (5) o] B
2 W

L}

~\~ 1 gt R gintt ;
W W lel), TE Y

0
o 1 (m\ (% sin'd EA W]
m3(2)£ B dt_(?) m: "
From these relations it follows that

ki 022.
| 1y (%) —'f(x) | o —m

R

I/
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' THE THEORY OF APPROXIMATION

Now let n be an arbitrary integer, and let m be taken
equal to in-4-1 or 3(n-+1), according as = is even or odd,
In eitker case, 2m—2 < n< 2m. Let the corresponding
expression 1., (x) be denoted by 7% (x). Then T.{x) is a
trigonometric sum of the nth order {it will he remembered
that this is understood to mean of the nth order af most,
according o the more usual terminology), and, since 1/m -2 2/n '

L, L I N
D)= ) = den ow ‘.&':";‘
it K is taken equal to m'ry/(4¢;). Thus the prqu"éf the
theorem is completed. A0

S0 much has been conceded to simp]icity,'\f)f outhne, in
building up the above incqualities, that thesfimal upper limits
are quite unnecessarily large, giving litsle» indication of the
actual magnitude of the guantities 4Hat precede. It will
add a little to the definiteness dfthe conelusion to point
out that ¢ = {(2/7)°, since (si@,a‘ﬁ;‘t} 2/7 throughout the
interioy of chewimmhmfbiﬂtggwaginn while

cgm[ .““‘ deJ‘ st AL [ Hf—l—f
e S0

so that
, ate, oAt

O F T g, e

< 100.

A
With mqr{ﬁttention te detail, however, the estimate can be
eut eryy ymuch closer. The theorem is actually true with
N “instead of the value adopted above, or even with
1 sumewhdt smaller value of X, On the other hand, it can

- be ‘shown that the statement is nof generally true with a value

of K smalier than =/2.

To pass on to a more general theorem, let f(z) be an
arbiteary continuous function of period 27, and let w(6) be
the maximum of |/{x))—f(x)! for |ar-2—-.,a:,| = d. The
function @ (6) has been called by de la Vallée Poussin the
modutus of continuity of £(x). With the word maximum
replaced by Zeast upper bownd, it can be defined for any



1. CONTINUOUS FUNCTIONS "

bounded function, whether continuous or net. The character.
istic property of a uniformly confinuous function is that
limy_, w{d) = 0.

let ¢ (x) be the continnous function of period 2 which
takes on the same values as f(z) at the points

2 27t
— 1, —rr—-}—zh-, ey, A——— T,

H

and is linear from each point of this set to the next. The s\
graph of @(x} is a broken line, no segment of which h&s
a slope greater than w{27/n}/{27/n) in absolute vahie
In analytical language, ¢ (x) satisfies the hypothes;s “of
Theorem I, with O 7
P o{27in) o\
2n/n v

For eyery positive integral value of n,, tkerefore, there is
a trigonometric som T, (x), of the nth erder sueh that

2
J— < 238 1 —
| L4 (:I}) '\?&g Jbl au?tﬁ'af?&( d’ﬂg)ln

(On the other hand, any speelﬁed value of z differs by less
than 2m/n from one of those for which f and ¢ are by de-
finition equal to each other neither f(x) nor ¢{x) can differ
by more than w(2 7/, from the corresponding common value;
and hence O\
r@—s@! < 20 (2]
3 »

for all values of =. If the quantity K/(2#)+2 is denoted
by K/{ the last two inequalities may be combined to yield
thefollowing statement:
“\Pueorem II. If f(x) 4 a continuous function of period
\2,1} with modulus of conbinuity w{0), there exisls for every
positive inlegral value of n a trigonometric swm Ty(x), of
the nth order, such that, for all veal values of x,

@ —Tul)| € Ko (2_;)

where K' iz an absolute constant,
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‘While this theorem is applicable to any continuous fimetion,
it involves the modulus of continuity in the inequality which
forms the essence of its conclusion. It can he shown that
the assignment of an outer limit of error for an arbitrary
continuous function, without some dependence on properties
of the function beyond the mere fact of its continuity, is
impossible. A

Since lim,—w w{27/0) = 0, it is to be noted thaﬁ\\
Theorem II includes one of the theorems of Weierstrags Lo
which reference was made in the opening lines of the cKapter.

In preparation for the next develonments, there i ‘6:@ca,sion
to examine more closely the proof that was gigﬁiﬁabove for
Theorem I. It will be recalled that to an apbitrary positive
integer n a second positive integer m wag assigned, in terms
of which a function Fi, (#) was construébeii and a trigono-
metric sum 7% (x), yielding an apprommate representation
of the given function f(x), was déﬁued as equal to an ex-

pression which could be reduced® to the form
W W dbrauhbl CARY . org.in

L[ 0P [L ],

i Deing independent. } #. A lemma stated essentially that
Fr (yu) is a trigonometrie sum in u, of order 2m — 2 < n.
It is possible~therefore to write Fi,[4(v—=)] in the form
QN

1 \) & .

= 'h}:]* 2> [Aug cos k (o —2)+ Bk sink (v —2)].

=1
Wheft&he above expression for Ty(x} is expanded as a trig-
unometru: sum in z, the constant term is

c_L" Ron Ano J"_’; Sflwrde,

\ )
and @ zevo if the last infegral vanishes, an observation which
will presently be important, for the reason that the indefinite
integral of a trigonometric sum without constant term is
itself a trigonometric sum, while this is not the ease if the
sum to be integrated has a constant term different from zero.



I. CONTINUOUS FUNCTIONS 9

1t may be pointed out in this eonnection, though it is not
essential to the main argument, that the coefficients B,z are
all zero. This can be inferred from an elementary theorem
on trigonometric sums, since Fi,{}u) iz an even funetion of w,
and is also directly apparent on inspection of the proof of
the lemma. If ax, I are the Fourier coefficients of fix):

_Lf (v) coskvdn, B —lr (v) sin kv de
= _uj(z;)eos vdy, g,--—-_;'__n_;‘ (v) sin ke de,

N Sy

and if 37 i Au i denoted by due, it is seen that O

#N

'
Tulx) = 9 g 30 -+ 2 du (ax cos ke + b;l sn\lm\)

&

As the d's are independent of the function fo be represented,
the caleulation of the successive expressions 7', (z) amounts
to a method of summation of the Eim'\iex serfes for f{x).

To return from the digression of the last paragraph, let
S (@) be a function of medb@uubnﬁigchrgms everywhere
a continnous derivative f (:r)., Eor a particular value of %,
let #(x) be a tngonemetne sum of the nth order, without
constant term: \\

ln (4,} w2 % (ay cos k- By, sinlx),

fi==1
)

and let ¢, be :aﬁzénstant such that

No/
$

5"\‘.{’ v (1) — i:z (-f) | < &y
\O J =
A

for aH"\wlues of a. Let {{zx) be the trigonometric smm,
\uthhut constant term, which has f,(z) for its derivative:
\ )
123
bie) = > (—-— sinfz — -’%-eos k)

and let v, (z) = F(x)— tu ().  Then ro(x) has the period 2ue,
and, since |13(x)| < e, satisfies the conditions émposed on f (%)
in the hypothesis of Theovem 1, with A = &,. Hence there

.\\\

A
N,

z

o 3



10 TEE THEORY OF APPROXIMATION

exists a trigonometric sum of the nth order, whick may be
denoted by . (x), such thai

Py () — ’r,t(u{,). =

It Tu(e) = (@) + ra(2), then fia)— Lulz) = ru {x}— 7, (),
and
| f@)— T} = = O
From the existence of an approximation for /' (x) it hét; béen
possible to draw an important inference with r aid to the
approximation of f(z). If f(x) is itself thes (Ignatne of
3 funetion of period 2:, so that the mtegt*a} of f{x) over
an interval of length 2w is zero, it fOllOWb that
. q \ ’
Jmm(;zz) die -—J Fin drw‘{ tn(a)de = 0,

whence, accmdmu tg t seu)m} aragraph preceding, the
Sum 7, () given by the pr ?ﬁ%"fﬁefbem T as an approximation
for ru{z) will have no cqnstant term. So the constant term
in the present Ty, (x),. Qsﬁned in terms of this z,(x), will be
zero likewise. \

The way has" }}o“ been prepared for a , demonstration of

TreorEM LY If f(x) is « function of peried 27, having
a pth derinidive f P (z) such that

9, .
\f'jf;" | FP () = f P ) | < A — 0y,

j.og\rlli real values of x, and xs, 4 being a constand, there will
= :\ecr?ast Jor every positive integral value of n a trigonometric sum
\} Tolz), of the nth order, such that, for oll real values of =,

Krt1}

j}—i 3

S @Dl <
where K is the absolute comstant jfound in the proof of
Theorem 1.

It is to be noticed that the argument is based on the ex-
plicit constraction of the approximating sum in Theorem I,
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and it is not clear that a smaller value of K in that theorem,
justified by some different method, would necessarily be
applicable here. The value K = 3, previously mentioned
in connection with Theorem I, results from the same explicit
eongtruction, and is available in Theorem III.

By Theorem I itself, there exists a sum Ty (2) such that

D@ — Tl < 2

(1 the basis of the more recent diseussion, as ¢\

[ ro@ e = pon @ — g o ) :\Q

it may be understood that Ty () has no cgf@tknt term.

Sinee f@®(x) is the derivative of the perledic function

F@#-0 (), furthermore, an approximating st Tz (z) may

be constructed for F@V(x), as inqiéa}ed_ above, with

ey = Ki/n, and N

. K

| F D (@) — Tug (@)} = ——5—
W \ar_()l}qraulfﬁl'ar'fﬁ org.in

M p>1, fo9() is itselfsthe devivative of the periodic

function ¥ (z), and the constant term in T (2) is zero.

By a sufficient numbers of repetitions of the process, the

theorem is established:”

In Theorem IENever if the integral of f (@) over an inter-
val of length, 2% Is zero, the same thing is not neeessarily
true of thg\ﬁmkﬂi&ry function ¢(z), and it is not clear that
the apknqgﬁnaﬁng sme in the conclusion of the theorem will
lack t@a constant term. The ditficulty is not a serious one,
hqg?’g?er. It

QY | IRICTERE

let v, (x) = ¢ (x)~—c/(2m). Then

[ @iz =0,

and there is a frigonometric sum Ty (#), without constant
term, such that
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ir {3

@ —Tu @] < 55, 0 ()

But on the hypothesis that the integral of fdx over a peériod
is zero,

le| = Uﬁ gs(sc)da" == |r [y () —f (@] d-”‘

. 2n
gﬁn-Qw(?}, Q.\\'\
g @—n @] < 20 (27, @—n @l < a2},
N

So the conclusion of Theorem II applies to th&ﬁpproximate
representation of f{x)} by a trigonometrie sumwwithont constant
term, when f(z) is the derivative of a periodic function, on
the condition merely that K' == K / (2 nj+2 be replaced by
K'=K/(2m)14, NS,

The same proeess,af, dnggct%rgn Whlch was used to prove
Theorem III then serves to e.stabhs

Tueorem IV,  If flx), QS' & function of period 27 which
has everywhere o contawous pth derivative, with modulus of
continuity w(0), there\emsts Sor every positive integral value

of n a trigonomélfic qum Tal2), of the nth order, such that,
Jor all real va,lues of x,

"f(x)~Tn(r < K—m—(&)

n? 7

and

wkevM is the absolute constant given by the proof of Theovem 1,
awl K" = K/(27)+4.

m."\ ‘A part of the content of this theorem may be restated
\, in the following

COROLLARY. If f(x) is a funciion of period 27 which has

everywhere o continuous pth derivative, there exists for every

positive integral value of n @ trigonometric sum To(x), of the
nth order, such that

lim n®e, = 0,

=

if & is the maximum of | f(x) — Tu(x)i.
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2. Approximation by polynomials

The development of the theory of approximation by trigone-
metric sums will be interrupted at this stage, to make way
for a presentation of the corresponding results with regard
to polynomial appreximation. The transition will be aided,
however, by one more lemma on the trigonometric side.

Lemms,  If F(x) iz an even function of period 2w, and
of there i a trigonometric sum To(x), of the nth order, sneh « N
that | f (@) — T (@) | < & for all valwes of x, there exists a cosinga .\
sum Ch(z) of the same order (that is, a trigonometric ’51ﬁ}.1"~’
without sine terms}, such that, for all values of wx, W
ey g ) \\ )

fO=t@ise (@

When f{x} is_even, the approximating sutn given by the
proof of Theorem I will automatically lagk\the sine terms.
as an immediate consequence of the fzﬁ:t{,' already pointed
ont, that its definition is equivalent t({\&nﬁethod of summation
of the Fourier series; andw@}\iﬁ Sgﬁﬂq*gﬁo? would be suffieient
for the main argument; but 1t gy ot mterest %0 hote that the
lemma subsists independently«0f any particular mode of con-
struction of the original approximating function.

For the proof, let ,..‘\\

6@ L L@+ T ().

Then C;(z) con$ists merely of the cesine terms of 7%(z),
without the/8ine terms, On the other hand, since f(x) is
even, \\J

O : 1
N f@ = 5 lf@+f (=2l

~

méii\.tl;erefore r
Y@~ G@l = | L1 — L@+ L) —Tu(—a)}
= e

Now let f(z) be a function defined for —1 <z <1, and
subject to the condition

ff(xs) “‘f(xl” = )'fmz“‘ xlf
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thronghout this interval. Let
x = e0s 8, [floy = flcog ) = y(f).

Then ¢(9) is an even function, defined for all real values
of #, and
|9 (0s) — 9 (81} = 1f(cos ;) — fleos 0),

< Alcos @y —cos ) < A1g,— . ~\\'\
By Theorem I, together with the lemma just proved, 'ih@fe
exists a cosine sum Cy(8), of the nth order, such th.&
Ki \\
no \‘
But a cosine sum of the wnth order in 8\13 X polynomial of
the nth degree in cosd, which may ¥eydenoted by Py (x),

and the conelusion is that 3 polxm)n‘nal P, () exists such
that

|§J(8) -l 6)! 'L:-

dialau ;&r%ﬁy opg 1&3
for —1 m.’;@:( 1. n’.

s’*

If the interval (— 1z \1) in the hypothesis is replaced by
an arbitrary intery, 1{(a, 1), a preliminary transformation of
variable may be\inade according to the formulas

,,’,,: 233"“‘{1-_?
N T S = A,
whereby’}“(y) is defined for —1 < y < 1, and
D\ -
\ A (ye) — £ ()]

O = o) — flo)) < Maw— | =

N/

< -3(b"a)'}ys—y1 2

"I.‘he result just obfained may then be applied to the approx-
imation of fi(y) by a polynomial in y, which is at the same

time a polynomial in x. The gemeral conclusion may be
formulated as

TrEOREM V. Jf f(x) satisfies the comdition

| Gee) — )| < Alme — |
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troughont the closed interval (u, b), of length 1, there exists
Jor every positive integral value of n o polynomial P, (x), of
the nth degres, such that

Sa) — P} =

Jor ¢ = = b, weth L= }K, where K is the constant of
Theorem 1, _

1f the smallest possible value of K were found in Theorem I,<
it is not clear that & K would then be the smallest dd]]llS%lb]P
value of I, but it can be shown that the validity of '_l‘hemagm %
is not general for any L smaller than } \

More generally still, suppose that ]‘(:z,) 1% an arb\‘}{rarg eon-
tinnous funetion for ¢ < = < &, and let w{d) be ¥s modulns
of eontinuity in this interval, With b — a=, let p(2) be
tie continuous function which takes on Qle same wlues as
Flx) at the points

27

\ }
a,a—|~ ,-:r S :*“b——, b,

wiw w.dbBraulibr i
and is linear from each poinkof this set to Shé next. The

funetion ¢{x}, having a hxjeken line for its graph, satisfies
the hypothesis of Theo,rv\em ¥, with

LZ)

while W\
:’\ F @ —e @) £ 200}

thron auﬁ {a, b). There is a polynomial P, {z) such that
{\ | ¢ (3,) — P, (J’) i /“; ‘L('J (z,f(?'i;);

s"‘ttmg L+2 = 1/, one may state

\ Tueorem V1. If f () 48 a continuous function with mod-
ulus of continuity ©(d) in the closed inferval {(a, b), of length
i, there exists for every positive integral value of n ¢ poly-
nomial P,{(x), of the nth degree, such that, for ¢« <2 < b,

| f ()~ Pu (2} £ L' w(i/n),

where I is an absolule constont.
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This incidentally ineludes the theorem of Weierstrass on
polynomial approximation, which was quoted at the beginning
of the chapter. _

The proof of a theorem corresponding to Theorem 1IT is
gimplified by the fact that the indefinite integral of a poly-
nomial is always a polynomial, so that speeial considerations
analogous to those relating to the constant term in the trige\
onometric case are not needed. A new complication i
introduced, on the other hand, by the circumstance that-the
degree of a polynomial is raised by integration, whﬂc the
order of a trigonometric sam remains unchange \

Suppose that f(x) has a continuous deu\&me J' () for
@ X 2 < b, and that there is a polynomidlNy, (x), of degree
n—1, such that VD

Lf @—pn )| <L
throughout the interval. Let :\\“

T .dbraylib
J. e as B Wf"(a% S pnla) == ra )

Since | v ()| < £, n () \satisﬁes the hypothesis of Theorem V,
with A = &,. Thereis' consequently a polynomial 7, ().
of the nth degrw,(sﬁc that

Llsﬂ
,'\ "
I pn (x),—}xm, (@) = Py (x), this P, (x) is a polynomial of the
nth @g}ee, and

VP = )] < T

\J Let f(x) have a pth derivative /@ (x), satisfying the
condition that

lf(?’(xg]hfw’(xlﬂ L Alas—m |

throughout (a,8). ¥ n—p>>0, thers is a polynomial of
degree n—p which differs from £ (x) by not more than
Li3/(n—p) throughout the interval. There is then, by the
preceding paragrapk, a polynomial of degree n—p-+1,
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differing by not more than L*Pi/[(n--p)(n—p-1)] from
FV(z), and so on. Finally a polynemial P, (x) is obtained,
of the nth degree, for which

. e Lottt d
) — Pu@)| = - (n—p)n—p—L1) -

For the applications, the existence of a constant in the
right-hand member of the lass relation is far more important ~
than any close estimate of its numerical value. Tt is mmt A\
convenient, even at considerable unnecessary expense mug]e; \

rically, to be satisfied with the observation that O
1 o w ’\‘“*
n—p)(n—p+1)...n  w—yp p\‘l:
1 et J\‘
a1 et pl P

tor n =z p+1, and to state the result 111 “he form of
"Trores VIL IF f (z) has a pth d{mmme () satisfying
the condition that W W dbtaullbralyorgm
1P (e} — f{p){’a’ )~ 2D Aay—ay,

throughout the closed miara;a! (a, b), of lengthl, there exists
Jor every indegral baiue\b‘ n>p a polynovial P (), of the
ntle degree, such tk{t&'\fm ¢ Zwah,

4 N ; 1 "v
..rf{m) —Px)| = T

where Ln‘ ( (p+ 1P Lot and Lods the constant of
Theorein ¥,
It ‘s clear that even with 4 = (0 the hypothesis implies
nothmg whatever as to the possibility of approximating f(x)
\h\ a polynemial of degree lower than p, sinee flz) itself
may then be any polynomial of the pth degree. By smitable
changes in formulation it would be possible, though of
secondary interest, to admit the value % == 0 in Theorem V
{or Theorem I), and the value n == p here,
From Theorem VI, by reasoning similar to the above, one
may deduee
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Throrsn VIIL If f(@) has @ continnous pth derivative with
modudus of continuity w(8) throughout the clused interval {(a, b),
of length 1, theve exists for every integral vilue af nlrp
a polymominl P, (x), of the nth degree, such that for @ =z a2 h.

r P ;
s@—reys (L),
where Ly = (pA+ 1P VLY (L42)/p!, end L. o the m'.i.},stm{i\
of Theovem V. SO\
CoroLLARY. ff f(x) las o comtinnous pth der;é.-.-'-ati;euj’bi'
a X x<<h, there exists for every posilive integral bt of »
@ polynomial Pp{x), of the nth degree, such tlnri;k

s X Y

lim #Pe, = 0,
= \Y;
where €, is the mazimum of ' f (:I:l.—\'}f’ﬁ(m)l in the interval
(E]', -b). C’\\:
The excepno:g’a{}rwﬁg}‘%]igﬁa&&:gﬁlues of n=<p has ne

significance for the corcliary,\which is concerned only with -
a limit for n = co, \

A
~
N

3- Degree of gonvergence of Fourier series
The preceding théorems can be made to serve as basis
for a discussion obthe convergence and rapidity of convergence
nf Fourier p,rid.’]ﬁ..egendre series, as well as of other processes
of appruxim\ation. This idea will be developed more fully in
succeg@j@g’hhapters; its first consequences will be presented here..
With' regard to the Rourier series for a given funetion f{zx),

‘i.tg.'\m be premised merely that it is a series of the form
N\"

./

Yo il S i
QO ) +k§1 (ax cos ko + by sin kox),
in which the coefficients have the values
1 T T ’ .
e = — J_Hf(t) coskidl, b = _:1; J;nf{t) sinktdt,

the formula for 4. being applicable when %k = 0, as well
as when % is positive. The expression
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8y () = ‘g—’ +k§ (a5 c08 k2 -+ by sin k)

will be called the “partial sum of the seriex to terms of the
nth order,” '
If the quantity

1
& “Feosu—+cos2u-t+ ... - cosnu

is multiplied by 2sindw, the product may be rewritten ag™\

N

+[1 ———wlni—;]-{-... _ ‘w}
\ \Y
-+ [sin(n —|—é) 1t — sin \ %)u],
- ;
which immediately rednces to sin(n-+3) u\so that
0.\
& sin (r+Pu

4
1 2%
4t gosu- co82y -+ - - cORZIN
+ u T Q% 2sin fu

Lot each eoefficient 1nw‘m\(9g)b,l%§;,mﬁk5¢gglgm the integral
expression which defines it ’Smce coskax and sinka are
independent of #, they mayt Sbe written under the sign of
integration, and the wan\us integrals may be eombined into
a single one:

\
S () = I f(ﬂ\-« + 2 (coskteoska+ mnkhmkm)

~—“\-r\ f(t)[ +Zfosk(f—~o)}

IJ‘ £t )sm(n_ I§)(t )dt

25“}1_:(?5"’"3?)

%

\“> From the last expression may be deduced the following:
Lemma.  If flz), of peried 2m, is bounded und infegrable
(in the sense of Riemann or in the sense of Lebesgne), if

Fe < M

Jor all values of z, and if Su(x) s the partial swm of the
Fourier series for f(x), to terms of the nth order, then

R
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IS, (Y -7 M log .,

for all vatues of x and for all values of wn. -1, where ' 45
an absolute constant, depending neither on x, nor on w, nor
on the function f{x).
By the hypothesis ou f(v),
\ .M [’” Dsin (A $){F— )
N P — ' di. ,
IJ.S'n (.7)) = T4 )qﬂ[l JS‘(! o 6) | \\\

S

1f one-half the integral on the right is denoted lni fu At
form may he modified by the substitation » = %(t— % and
by recognition of the fact that the resulting 1n14§gmnd is an
even function of «, of period 7, to yield the \anvluamn that

. 1 —)2 sm(Zn-l, 1)u|
In = 5f e u
= [ g e )

%m W I
_ 1 rnz sin (2n+ Du
2 ol —7rle

ld g"' Sln(&n—[—l)uﬁdﬂ
sin u 9 | sin 1

W, dbl aullbral"y.or n

From the fact that .

8y (.Q#

sin (2 u fﬁ) .

it, follows t-ha.t

\/ i §_1n(2n+__1}u
\ o I sin ) = 2nt1

L]
= 14+2 D> cos 2ku
k=1

for'iﬂ“ values of . On the other hand, |sin (2 n—l— Duj =3
while

Y sinw . sinGep) _ 2 1

w = w2 T @' snw
throughout the interval of integration. So
. 1in 2 7 5
Jn:I +f”'é v "2n 1) du 4 o 2 Ay

2 Jun u

=z 9+ +—10g 5 + ; log n.
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The last expression does not exceed a constant multiple of
log n, for » 2= 2, and the conclusion of the lemma is justified.

The method of application of the lemma, which is due to
Lebesgue (thongh he did not make so extensive use of it as
is done here), may be summarized in

TrEoREM IX. If f(x) 4 0 continous function of period 2,
and Su(z) the partial swm of ifs Fourier series io terms of
the nih order, n2> 1, and {f there exists a trigonometric szfm\\
Ty {x), oj the nth or dm such that

| Alar) — Tula) ] = 8 \ i\.
Jor all values of x, them, for all values of =, x\\ ’
Jle) — 8, (@) < Be, log nN

where B s an absolute constant. \\,

The statement is equally true, though AT less interest, if
S{x) is merely assumed to be 1nte§‘1\able of course &, can
not approach zero, when the relations are considered for
snccessive values of n, thies ?f“ﬁ']igl FeHhEds.

Let the sum 7% (x) in r.he hypothems have the cxpression

N

Z’J«; ¢os ka4 By sin kz).

It is found Ly dn*e\t mtegratmn that
—-f’ Tn(t)c'\s»s:ktdt = o, -—f To(t)sinkt dt = B,
g >

for % <X m ‘s0 that the partial sum of the Fouriev series for
Tﬂ(sc&o terms of order m, is identical with Ty (x) dself. T
tll\(’. Fourier coefficients of f{z) are m, bg, those of the fumction

e \ W,

O Ra(®) = f(@)— Tu(@)

are arp—eoy, bp— By, for k < n, and the partial sum s, ()
of the Fourier series for R.(x), to terms of order =, is

Sn (:I;‘) == % ("10 — ao) - ké; [(ak— “k) coska + (b;; - ﬁ_r;) 8in ch]
= Sp{z) — Tulx).
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Since | Rp{x)| << ea, it follows from the Lemma that

lsala)’ << Cey log n.
Consequently

| f@)—8n(@)i £ | f @) — Tul@): + | To (@) -— Su (),
= |Rp(@) | +{an(@)| S en+Ceplogn < e, :gg; + Cey logn

for n = 2, and the last expression has the form Be, log ﬁ,\\\

with B = (log 2)~1+0C. Oy
The theorem may immediately be specialized and{made

more definite by combination with Theorems 1—IV, ~{*sf‘iiplll:n.'.nq:
CoroLLarY 1. IF D

) — )] < diz—a 2O

Jor all values of' z and xy, 1 being a ’e@%t.ant, then

| fl@)— S (2)] < zmio_gg

4
7
W

www dbraulibrary.drg.in

CoroLLARY II. If Slx) is_continuous with modulus of con-
tinuity w (d), N :

| f () —S{@H ‘g dw (-25—) log .

COB_OLLARY Tia. " The Fourier series converges uniformly to
the value f{z),(3f f(@) has o modulus of continuily o(d)
such that limyS) w()log § = 0 (Lipschitz-Dini condition).

-CoroLLARY 'TIL.  If f () has a pth derivative fP (x) such

L 3
N

that )
A P @) P ()] < A —a |
«-f‘?’ all values of z, and ay, 1 being a constant, then

Y
L f@)— 8 (@) < é%fﬁ-,

CoROLLARY IV. If f(x) has everywhere a continmous pth
devivative with modulus of continuity w(d),

|F @) — 8 )] < %’}w(%‘) log 7.
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]

In each of these stafemenls, the conclusion helds for all
values of «, and for all values of n = 2; the coefficient A is
an absolute constant, while Ay depends only on p.

The corollaries are stated separately for emphasis; it is
clear that all are included in Corollary IV, if it is under-
stood that p may in particnlar have the value 0. The use
of the same A in T and II, and of the same A, in III and

1V, signifies merely that when fwo constants are concerned,*
one symbol may be used to represent the larger of them\
It is worthy of note that even the dependence of Ag~on~

p can be eliminated, with a resulting simplification in Lor-
ollaries ITT and IV which does not have a counterpart, as
far as the present evidence goes, in the case of\fhe corre-
sponding third and fourth Theorems. \Y

It f(z) is a function of period 2~ haxjug a continuous
derivative, the Fourier series for f'(z) ds“that obtained by
formal differentiation of the Fourier{ “Seties for Jlx). This
is recognized without anxf£9‘3§.gg¥:éu *ﬂlgptl_gpg_t}ﬁ to the con-
vergence of the series, from tiheure atlon

e R is L.
I_n_f"(t) cosktc?t R kJ_nf{t) gink?df,
m AN '

J_ﬂf'(t) sm{&,dt == —kﬁﬂf{t}cosktdt,

whieh are obtaingd by integration by parts, the terms which

would appeap ‘Gutside the integral sign reducing to zero,

becanse ofzthe’ periodicity of the functions involved. If the

coefficienis)in the series for f(x) once more are a, b, and

if f(af his a continuous derivative of order 2¢, where ¢ is

ang-positive integer, the Fourier coefficients for e (x) are
<b¢g;~4—— (— ek gy, B = (_—-—- l)q_k2§r by, which means that the

¥eries for f{x) can be written in the form

o
Loy~ > L (g cos kx4 By sin fex).
2 ) k=1 kﬂff

The partial sums of the series for f(z) and for @9 (z), to
terms of the xth order, may be represented by Sy (x) and
S () respectively,

$

3
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Let . ,
S ) = S8 () == e (@),

and suppose now that |e, ()] << &,, where e,44 << ¢, for all
values of n that are considered, and limp—=w & = 0. Then

ay c0s ko + Sesinkx == gy (@) — on ().

By any of the prccedlng corollaries, ITa, for example, the \\\
series for f(x) converges to the value of the function, Whlli‘
the series 2 on—1 (@)%, 3 op (x)/K are convergent, becaﬂse )
[or ()] is uniformly bounded. Hence thelemamdelj va% [J‘)
can e written and re(manged as follows ':;.\
f(x)—bn(.f) == ("" 1){1 2 }24 ({I;» L()H?L.’}“—i‘ Jgk‘ilﬂﬂ )
0 \ /
= 2 ,q fex 1\@)“ ox ()]

- g

& 32l g w0
As the parentheses 1nth} last summation are all positive,
and as |y (z)| < s;h-"i‘ g for k > oq,

L >

Y P TR
/@) (@ = (n4 1) + ni’::%,-l-l(km (;‘._]_1)24)
2y < 2,

i\ RSV

ul\iﬂtﬁ" the hypotheses of Corollavy 11T, let p — 24 if p is even,

=/ 2g-+1 if p is odd. Then Corollary I or Corollary I11
\my be applied directly to f2 (23, which is found to satisfy the
requirements of the precediug paragraph, with ¢, — (4 1logn)/n
in one case and ¢ = (4,Llogn)/n® in the other. The
corresponding values of 2s,/n* are (2.44logn)/nPt! and
(24, 1 log n)/nP** respectively. For literal accuracy, it must
be admitted that (log =)/n diminishes only from » — 3 on,
and that the comelusion has been established, when p is even,
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only for » = 3. The value » = 2 may be included if the
previous & is replaced by a somewhat larger quantity, with
a suitable adjustment of the constant in the coneclusion, if
necessary.

Similar reasoning may be employed under the conditions
of Corollary IV, except that it is no longer satisfactory to
take 2g = p when p is even, as @(Zn/n)logn might not
decrease with increasing ». It is snfficient, however, to let

p = 2912 when p is even, p = 2¢+1 when p iz odd, and ()

to obtain e, by the application of Corollary IV to ﬂm@
as thus defined. From the definition of w(d) it is ceftain
that w(2s/n) itself diminishes, or at any rate d'o}s not
increase, as # increases. \

All the cases in question are covered, with sonje rédundancv
if the following are considered succesmvely,.\\fer w(d) <44,
p=10,1,2¢ (g= 1), 2¢+1 (g = 1,1‘, :fu‘r general w(d),

p==0,1, 2 29-+1 (g=1), 2¢9-+2 (q> 1} If a singie letter
13 used to represent the largest of 4hg Jini opgrﬂ.per of con-
stants enfering into the corresponﬂ;ng conclusions, the result
may be formulated thus: N

THEOREM X, The preceding Cwollwées IIT and IV may be
vestated, for all values of pE\O with the multiplier Ay replaced
by an absolute consthnt" D depending neither on p nor on
anything else. N\

4. Degree gt convergence of Legendre series

A conmderablé part of the above reasoning ean be cartied
over to thedcase of Legendre series, though the relations
are lessﬁmple than for Fourier series, and the results as
prese.x;ted here will be less complete,

\By ‘the Legendre series for a given continuous function f{x)
is'meant a series of the form

@y Xo(2) 4 a1 Xy (@) +as X (@) +- - -
where Xy (z) is the Legendre polynoinial of the kth degree, and
2k+1
2

J:f(t) Xe(Bdt.
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Not to work out the theory of these polynomials from the
beginning, it will be assumed as known that one of them
is defined for each integral value of % Z: 0, the first two
being Xy = 1, X, --: = that they satisfv the relations

..[_llx;(ﬂ Xe(Hdt == 0 G+ 8, J Xt

J T2k —i—l
that any successive three of them are connected h}s t,hf'
recursion formula \/

(1) Apa {2) — 2F + Dyor X () + kx;;_io(;{{\"—:' 0;

and that the polynomial of the kth degree eam be expressed

in the f )
in the form . N ':;\\.,
Xlr) = — [x+i(1 w”\)‘“ cosglt de.
b JD
\
In the Iast expu%‘%lon ]l JLebence of imaginaries is only
0]" m
superficially appal ent i tefland is expanded by the

binomial theorem for a pqmtue integral exponent. the co-
efficient of each odd power of 7 after integration is an integral
which is seen at on€@'to be equal to zero.

Tet Su(x) %tand\\fm the sum of the first »-1+1 terms of
the series: ()

No/

N (3}&‘ ao Xo{w) +ay Xy(a) + o 5 an X ().

By thﬂdhﬁmtlon of the coefficients,
{\

N,
R

o S () == f S8 Kalz, D)dt,

2\ ¥,

\}where
Ko, §) — ;— (X (@) Xo () + 3K, (2) Xy (D)4 -+
—|— (2 '}‘L—i— 1) Xu(ﬁ?) X (t)]

This function can be rewritten in the form

Koo ) = 2 @) %0 —Xo @) Aa ()

m—t
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the identity is immediately verified for » = 0, and may then
be proved in general by a straightforward process of induction,
based on the recursion formmia.

ced il —afWeosgpi = [P (1 —2z%) cosT ]t
< 2t (1 — o]
A
N
and hence ; Xp{z); = 1. There will be occasion to use a Llosm A\
inequality fer ,Xk| in the interior of the interval (—1, »1‘1
To return to the integral representation,  \J

1 r ._ ",\
Xi(a) = - I [* -+ (1—2") cos® 9} 44 &
Jo N\

9 (2 \
<2 [Traa s,
n\\

] N
the last equality resulting from the fact tlga%?:os ¢ = cos® (T —g).
Hince W W, dhﬁauhbral y.org.in
a2k (1 —a®)eosty = costy —L—{n- s;m2 s T —(1—a®) siny,

and since sing = 29/ tl& ghout the interval of integration,
while 1-—a® is pos:twe\ for the values of x under considera-
tion, it follows that\

4 - 2
z —|‘(1—T2)\Oﬂb gL l— r(l—af) g’ = 1 =55,
.\u.
it &= (J*«:—x?)l-“";’ . By an application of the extended
mean valie theorem to the function ¥,
\”\u\ eV = 1——y+—;—y23_65’, 0871,
v 4
so that ¢¥>1—y for all real values of y, and in the
present conpection
1 — g2 < oo,

9 S 9 o0 >
| | <2 2 A2 g oy < ___'f e—REE2
| Xoe() | < RL e de = - ) P,

o
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and, by the substitution u == (42 Eg,

\ R % g e -

() = sz e du = TR i (k> 0),
where ¢ is independent of % and x; the numerical value
e = (®/2)Y2 i3 not essential for present purpeses.

From the relation just obtained it follows, first, that if r
is restricted to an interval —1+3g < a<l1—3x5, 0<lg < ?\\\

then ::: \

Xula) < o, \O
where ¢ is independent of % and x, but depeqd&\\an'w;; and
secondly, that D\

s X
w

1 ) . 3 T i
I_1|Xk(ﬂ’3)| dz = %I—l (I%W == fl%
where ¢, is independent of 7. \ “

It is possible now to proceed tq\hh‘e' proef of the following
lemma, which as\sigmsmmupperﬂg@mﬁiﬁor | 85 ()|, not through-
out the entire interval —1 << 2 1, to be sure, but through-
out an interval interior to gt

Lemma.  If flx) is hounded and integrable (in the sense
of Riemann or in tl}(;;@pnse of Lebesgue) for —1 <a <1, 4f

NP OIS
throughout $helmilerval, und if S.(x) is the partial sum af
the Lege@@(:&fseries Jor f(x), then

§ |Su(®)| < GMlogn

ﬁgtj"}; 1+ <2< 1-—9,0<5 <1, where G does not depend
~ \5}; T, N, or the function f(x), but does depend on 1.
\/ The proof starts from the fact that

il
Sa{z)! < 1H£_1|Kn(x, | di.

Let the interval of integration be divided into five sub-intervals.
terminated by the points

1 1
;r 1__'1.7: 1.

1 1
+1!"‘"1"’r‘§%$‘—"£; x+ 2
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Under the hypothesis that —1 49 = 2 =2 1 —49, these points
will suceeed each other in the urder named, as soon ax
w>2/n. Tt will be assumed for the present that this con-
dition is satisfied; then, in particular, » 4 0, and as there
will be occasion to observe inecidentally, [(n -+ 1)/n]t?<22.
T.et the values of the integral of | K, over the sub-intervals be
denoted by I, -+, I; respectively. The relation ' Xi{7), < /&'
can be used in the second, third and fourth integrals, d]ld’ {\
the relation | X(x}| < ¢/k'%, which is independent of ¢,

any of the #ive, In the middle interval, i»\f D
Ko, ] = | X~ @+ D) N@ %0
£=0 2 e\
- 1 1 ___ g ’Q}
H2—+Z‘—2(2f. 1) 343 O
1 &

‘ﬂ; (1+; ]\‘\
2 2 _w_wwiv.q_bg%u]*bggr‘fzaﬁgjrul Ve,

,‘

and hence
din
& _'J; | En (@, t""{<‘ (2q +1ndt =224 +1).

e\J
The representation ‘&i\K {x, ?) as a fraction is to be used in
the remaining 1nteggrals In the first interval, |x--#| = §7,
and ’.'\/

= v[ék |I&(J;,t)idt

l
”\:21:*“"*"1 [ ?3+1 (T) f ) |Xn(t) af
N/ ardn
+ |Xaa(-17) f |-Xﬂ,+1 {t)| d f}
- Rr-t1 1
< 2L [(n+1)1, f PACHIZ " Wl|}1n-|1(t}|rit]
n+1 2529 . 402_@

Il/ r"'\

PR IR Y L
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In the same way, Iy << 4cg/n. In the second interval,

nrl | Xong1 (2) Xn () — Xn () Xanga (B
- n +1 24"

iy

<Y Tt <2

s0 that
*r—1in w—1ln T
—1+, 5 F XS,
or, by the subst-ltutlon x—1 = 1, O

2
Tw T uf du
£ * 240 = 2¢4° (]0 3 log ).
L= 29 cIl’,‘n- 44 =7 Y 4 g\

Similarly, [, <729 Qog 2 4-logn). As n {s an mteger satis-
fying the condltlon n>>2/p =9, it is &értain that » = 3.
log n>1 and the inequalities that‘lldve been obtained for
L, e, I will mere\ﬂy he, 3{}1‘;‘1}5@&'11?‘1 if the factor log #
is mserted in the right-hand melnbcrs whereve1 it does not
occur. By combination of th.ese inequalities,

I |K\(\.,z f|dt < G logn

for n>>2/y, the; nu\bet @, depending only on 5. For each
value of n belougmg to the range 2 < » == 2/y, the integral,
considered d3) & fuuction of @ for — 1 +q < x << 1-—9, has
a maxipah value. Let G, be the largest of the finite
numb, \(‘rf maxima thus determined. Then (¢, depends only
on Ty dnd the statement of the lemma is true for all values
o"f*n > 2, if @ is taken as the larger of the numbers G,
\ Gga’log 2.

For the application of the lemma, it is to be noticed that
an arbitrary polynomial of the mnth degree can he expressed
identically as a linear combination of X, (&), -, Xn ()
with constant coefficients. Then a process of reasoning
which is entirely analogous to that used in the proof ot

Theorem IX, and which need not be repeated at length.
serves to demonsirate
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TueoreM XL If fx) i a continuons function for
—1 < x < 1, and Sp (x) the sum of the first n--1 terms
of its Legendre series, > 1, und if there exists a polynomial
Py (), of the nth degrec, such that

| f @) —Pola)} < én

for —~1 <z <1, then, for —1+q <z < 1—9 {(>0), I\

f@)—8e ()] £ Heylog n,

where H depends only on 1.
The more specific resnlts obtained by combining this prop-
osition with Theorems V—VIII will not be forn{llﬁted sepa-
rately, but will be summarized in a single - '3
CoroLLaRY. T f flx) has a continuous pth de’rnatwe (p=0)
Jor —1 < 2 < 1, with modulus of conlimisty w(d), and if
Sy () is the sum of the first n —I-\I\ ferms of the Legendre

series for f(x), then
Jor flx), the W\-ﬁrpdb{'( UIJ@_I al)y orgin

f@)—Balay = '. o log =,

o
£
.

./zs

Jor w = p and for -—j~{—-r; a;_ x < 11—, where Hy de-
pends oen 5 and on,p.\\hd not on anything clse: in parti-,
eular, the series co?izg‘efges wniformly to the value f(x) for
—14g <z g‘i‘.—r‘r, if fla) dtself has o modulus of con-
tinuity o(d) _fo}" . such that lim a{d) log .= 0.

Since R gﬁy e arbitrarily small, the Iast concluswn implies
that ‘ke« series is convergent, not necessarily uniformly,
throughiout the open interval —1-<Zz 1.

*Gronwall(MathemamscheAnna]en vol. 74(1913),pp. 213-270;
\“j‘mnsactlons of the American Mathematical Society, vol. 15
(1914), pp. 1-30) has shown essentially that

[\ Eae, ]2t £ Go®

for —1 < z <1, where @, is an absolute constant. It follows
that conclusions analogous to those of the preceding theorem
and its corollary hold for the entire closed interval (—1, 1),

N 3
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it the factor logs ix rveplaced by 2’7, the corresponding
wufficient condition. for uniform convergence being that
limg., w(6)/8** = 0. Dut the proot of the relation of in-
equality for the integral appears to be rather long, and will
not. be set forth here. From the deﬁnition of K,, together
with the facts that | Xp(z) == 1 for —1- -3 and that
'_r!X;;(f) A e /B2 0t is obvious that \{\
- . 1 Jl\ . . . '.’3
J Kl ) dt o 1 D2k A ) e A e W ™\ g

- T 2 ] . \J/

L Y

where ¢ s an absolute constant; and it can be m}\ermd at
once tha‘r the series converges uniformly to tlw\mllle f(a}
for —1- o<1, it f{x) has a first deriv ativewith a modulns
of u:-ntlnmt\ 0(6) such that limg - Um(d\k\él == 0. while
there are corresponding theorems on. dagleo nf convergence.
In a later chapter, conditions willg Me’ obtained which are
closer than those thlh udlcra,Eed ﬁw\lgh not so close as the
ones (,orre:,pmldnu_, “to ‘rhr: factoay ne

From the discussion of appl"oxmmtlon i terms of polynomials
and trigonometric sums it fa uatural fo pass to similar questions
with regard to deve]opm@nt\ in series of more general functions.
particularly the chakieteristic functions defined by linear differ-
ential equations (with boundary conditions. The beginnings
of such a thaory Tave been presented by the author (Trans-
actiong of xt;he‘ American Mathematical Society, vol. 15 (1914},
p. 439\56)’ and W. E. Milne (the same Transactions, vol e
(1913}\\9[’ 143-156). The present account, however, wil
b,e,\contlnued along other lines.

PPN 7

3
\
4



CHAPTER II

DISCONTINUOUS FUNCTIONS; FUNCTIONS OF LIMITED
VARIATION; ARITHMETIC MEANS "\

e ¥ ;
S

Introduction N\

The discussion hitherto has been concerned alm(g :ent;relj
with uniform convergence, and with functions thag are con-
tinuous throughout the interval under consideration. Corres-
pending theorems with regard to the ap rommate represen-
tation of discontinuous fanections are naturally less simple,
and perhaps of less immediate mSQrest It. will be well,
nevertheless, net to disregard ent:ne]y the question how far
the theory that has been\,‘outg‘ggqug@,pa@ dhrppght to bear
on the representation of suc}i funetions. This question will
oceupy the present chapter® (Fm a somewhat different set
of theorems on the appraXimate representation of discontinuons
functions, reference ditdy be made to a paper by C. E. Wilder,
in the Rendiconti" 3‘61 Circolo Matematico di Palermo, vol. 39
(1915), pp. 345£361.) There will be occasion also for the
further deyelépment of the theory as applied to conginuous
functmns, \b‘v reference to the concept of limited variation,
and study of the summation of Fourier series according
to the method of the first arithmetic mean. A beginning
mll be made by a review of some well-known general theorems

\' \ibout Fourier series.

1. Convergence of Fourier series under hypothesis
of continuity over part of a period

Let f(x) be a function of period 27, which is summable
over a period, together with its square. (Without ehange in
the form of the argument, the discussion can be kept elemenfary
for the present, with results which still have a high degree

83 N
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of generality, if it is assumed instead that fi») is hounded
and integrable in the sense of Riemann.} let

k) T
. 1 . .
ap = ! Flhreoshtdl, b = ‘ FOy sin it ot
ELIPY B LY R
SNy {i’) - {:';I - )‘ (fﬂ- cos oo - sin Ll

Then, as may be verified by multiplying out the sqnae .mlt
integrating term by tern.

. f i} {f(:c-}—b'“ (.J')]gri.?‘ ’\\“"\ '“~
J LF@)de— - J F @) Su(r)dud }J’m;[,5*,\,(.7‘)]%3.4»
== J [F)2do—2 [““ +2(\, %,]

www.dbr aultbral Y- orgJ_u{ a[]_ -+ Z (Hh + b, ]

)

o _H[;(;r)]f(b l—HZ (et +- bi) ]

As the first memkbr can not be negative, it must be that

+Ztak+i»)< JlLf(a,)]zdc-

for alL‘éNues of », and hence that the series
N\
O ——+2 (ak+b)
o
\'"> “is convergent. It follows that for any. function f(x) of the

character specified, the coefficients ay, B approach zero
as kr becomes iufinite. The identification of the sum of the

series with the value (1/m) ‘r [f(®)]?dx is not nceded for
present purposes.

The assumption. that [#{«)]? is summable is not essential
to the truth of the conclusion. On the hypothesis that f(x)
itself is summable, let fv(®) be the function which is equal
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to f(x) when |f(2)| < N, and equal to 0 when |f(x)|>> X,
Let ax, b be the Fourier coefficients of flx), and axx, v
the corresponding Fourier coefficients of fx(z). It is known
from the earlier work that limg -« taw == @, Hme—o by = 0,
tor fixed N, sinee fx(z) is bounded. Let & be an arbifiary
positive quantity, and let N be taken so large that

L@ty ian < e )
The hypothesis of summability implies that such a C}J’O'ICP
of N is possible. Then ~\
};J:I [Flry—fv(@)] coska dax = —\6‘
L | H f () — fx ()] sin .?L:r,ldx\‘i 5 ¢,
for all mlue; of k, and hence :\'\\\\:

) 1www dbrauhbl ary. mg m
|ﬂ,f'_aIN|<“_§£ 3 ‘ e —— b.f{\

~ S 3
<N

But for the pa.rticular Va.iﬁé‘ of N in question there is a &
such that |exy| < ¥8,Vbew| < f6, for k = ko, and for

values of & subge\t to the last condition it follows that

Tan| <o, b If f(x) is a summable function of period
25, and 2f aw.} B are its Fourier coefficients,
PN\Y;
x\’lnnak—O Iim & = 0.
] k=no

I\e'\&let f (), still summable and of period 27, be supposed
‘tQ' Wanish identically for m—7 < 2 = xg+q 0y,
\"\,As was shown in the first chapter,
' 4

. sin (n+ 3) (t—m) 4
s = & | 0T

Let t—;ru -= y; inasmueh as the integral of a periodie
function over a period is the same, wherever the initial
point is taken, the limits —z, = may be retained after the
substitation:

ux
v
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sin(n -4 &) dn.

2uindu

y

. 1 i ]
‘qﬂ (wﬂ) - _I ’A ./‘ (-rlr lu' #)
. 3

or, after expansion of sin (nw -t §u) by the addition theorem,

1 L 1 .
Su. (if,-l,) . 9 r J f{.’;‘r] { ”) cot 9 wosin nee du
L V]
. N\
o C
+ -].T l Sleo+ 1) cos nu die. AN
oS =

¢\

The facter cot 3# is bounded and contimious over ;ﬁ‘e}range
of integration, outside the interval where f{a, ;}—@*&-’anighes
identically. Hence S @y +u)eotu, like ’,{t(:-\i;;,.-}- w} itself,
is a summable function (or a bounded funition integrable in
the sense of Ricmann, if this hypothesis\aras originally im-
posed on f(x)), and the reasoning {]f}{hm preceding para-
graph is directly applicable to shp\\&\\ithat both integrals in
the last exp1'essiog,w@mmg@hb@ggz;bﬁgsmn becomes infinite;
that is, RO

lim S3#) = 0.

'ﬂ':x‘s‘
More gencrally, if £ (x ‘atid ¢ () are two summable functions
(or two functions shfisfying the alternative hypothesis), if
Sa(x) and s, () ave their respective Fourier sums of the
nth order, apd\if f(x) and o (x) are identically equal for
Zo 9 L a5+, then

£
N\

'{\\:s.} n]i:n;-: [S)i. (:rﬁ) — 8u (a'[;)] == 0,
:é{:ﬁie Fourier series for ¢ (z) converges for x = @, to the

PN

\s}vflltr,e ¥ (%) = Swo), the Fourier series for f{(z) does the

7 same.  This is commonly expressed by saying that the con-
vergence of the Fourier series Jor a given function at o speci-
_ﬁec? point depends- only on the behavior of the function in the
“3?9}1?)0?"'190’3 of the point; it is tacitly understood that only
functions of some spocified class are considered, as, in the

present connection, summable functions, or functions which
are bounded and integrable,
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It is possible then fo pass immediately from Coroltary IIa
of Theorem IX in the first chapter to the following statement:

THEOREM 1. If F(z) is ¢ summalle funclion of period 27 (o1,
less generaily, a function of period 2.r which is hounded and
integrable in the sense of Riemann), and if fthere is an inter-
val (y—7, m+9), 0<ln<m, throughout which f(x) is
continatous, with o modulus of continuity w (&) such ithat
limg_, ®(8) log & = 0, then the Fourier series for f(x) Cfm\\
verges for x = my to the value fx).

For a periodic function ¢ (x) can be defined as e(}ﬁ‘a,l to
j(x) in (@y,—7, 2s+1), and linear, say, from mex 7 to
ap—n - 2, and this ¢ (2} will have a modulus mﬁontmultg
satisfying the regnirements of the Corellary c,ltéd

Attention will next be directed to the simplest case of
convergence at a point of dlbcontlnult) ket f(z) now be
a function which has a “finite Jump’ \'QI‘ diseontinuity of the
first kind, at the point x =- 2y, approaching limits which may
be denoted by flzy—) and FERAPRIUDRYN CTENES 2, from
the left and from the right res‘pectneiy Let it be supposed
that the values of f(x) in, ‘bhe interval @ — ¢ < & <>y, to-
gether with the value (:cg —), form a continuous function
with modulus of cont‘nfmty w, (6), and that f(z} is likewise
continuons, with thé\other limiting value at u,, in the interval
from xy to a,43y the modulus of continaity this time being
w; (d). For, egch valne of 8, let @ (d) represent the larger
of the numbers o,, @y. It will be said briefly that f(x) /s
continuoud for xo—n = x = wo+ 4, with modulus of con-
tinuity e (8), except for a finite jump ot the point axy. It is
upderstood always that f(r) is summable over a period. If

"‘lflm‘gzo w(d)log 6 = 0, Theorem I establishes the convergence

0f the Fourier series for f(x) at all interior points of the
interval (xy—#, @+ #), other than z,, and it remains to
consider the question of convergence at the point o itself.

For this purpose, it may be assumed without loss of gene-
vality that ap == 0. For the terms of the series which involve
cosnz and sinnx, taken together, are identical with the
corresponding terms in the development of f(a) as a function
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of x—ux. In formulas, let =z —uaxy = y, fl2) = o),
t—aoy=wu, Then w«—y=+¢---2, and

7 Ll 3
208 nyf1 ) cos nudu+sinny J__n ¢ () sin nir du

. o1
wfﬂgﬂ(u} cosniu —y)du = J_,.,f(t) cos n{t — x) di A
AT \\
= (oS nmfﬂf(t) cosnidf-+ sin nxJ_Tf(C) sin n d;

The agsumption that zo = 0 is therefore equivalent tog change
of variable which does not affect the conditions of; ﬁ}e problem :

With this understanding, let the symbols j{a?q—;\{— and flon—)
be replaced by £(0+) and (0 —), let

file)=f@) O<z<n), filx) %ﬂ(——x) (—m = 220}
Ji0) = f((}ri')

WOWW dbraqul:n ary org.in
and let f;(z) similarly be an. ‘even function identical with j(z*:)
for —n < 2 <0, and taking on the value #(0—) for x = 0.
Let Su{x) and Su(z) e the partial Fourier sums for f;(x)
and fy(x} respectivély. The function fi(x) is continuous
thruughout the 1nt§rva1 —g=ax<%. If o, and x, are two

- Tumbers belonging to this interval, and if ‘ay—ax;! <9,

8 \..‘

x\ iﬁ (o) —f (331) = w(d)
if .z;i%nd ¥, have the same sign, or if one of them is zero, and
Qi ()£ )| SV — 1 O+LA O —file) = 2u(d)

if x; and «; have opposite signs. Similarly, fg (¢) has 2
modulus of continuity < 2w(d) for —g Sz q- If it is
gupposed that hmd»_ w(d) logé =0,

S 8, (0) = f; ©0) = f@ +), lim Sz (0) == fo (o) SO

by Theorem 1. But
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, sin (n -+ 0t L, 2 q1n(n—+—%)t
‘,m(O)——f S5 gnte 2sin} ¢ ¢ f'f(} 2sinyt

sin (n+ §)¢ qm(n—i—%)f
S0y = If?() T 2sinis “__Ioﬂt) 2singt

&mm—}Jwﬂaﬁ“”+”du; [500) 4 5,201,

2sin gt

and theretore

tim 5,(0) = 3 [fO-H)+A0 ).

I )
4

The conclusion may be appended to the theorem as
CoroLLARY I IF F(x) satisfies the conditions of The ey 1,
ercept for a finite jump at the point xy, the berw‘s.cg}zmgee
nt o to the value 3[flxe+)+.fl@—). \
S0 far, nothing has been said about unifo rm1t3 of con-
vergence. To lead up to a discussion of‘ts is topic, the
following lemma will be established: \\ N

Lemma L. JF flz) ¥ an mba(g;gw‘ ,}_7 IQE IJ; tgelcg?;l@ the
nlegrals

Aay}ﬂf Jteoskidi, ., Bﬁ(y] ff(t)sm?.td{

wpproach zero, ns k becomes m}lmie, wniformly for —m Y=
If f(z) is boundedc Ad) Integrable in the sense of Riemann.
the proof holds w1nh01 change of form when the integrals
are thought of as Wiemann integrals.
In the ﬁlSt Qlace, it is clear that

% ‘hm;. w Az () = limg= o B () =

for al’i_}o\ﬁwed value of y in the intery al. For Ap{y)/r and
B&{—\)z{’f are the Fourier coefﬁclents of a function ¥ (x) which
\szequal to flz) for —m < xSy, and equal to 0 for
yx < ow. Lel £ be any posatew quantity. Let

Ay —:J: IF di.
<l 7, and so

This funetion is coptinuons for — 7 =y < 7,
uniformly contionous. I.et 8 be a positive number such that
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A |
Ay — A< ¢

if y and ys are any two points in (— 7, ) for which
lya—w|<<d. Let N be an integer, for definiteness the
smallest integer, such that 24/N-Z4, and let z; = —x-(2ja/N),
J=0,1,-.., N. By the remark made above as to the
behavior of A (y) and By (y) for fixed y, there is for each
value of j. a number k%; such that i Aelz) <74 &, [Bu(z)| ke,
for k = k. Fet X' be the largest of the numbers ky, -:wg K.
Ji y has any value in the interval (— 7, 7), there Is'a z
such that 0 < y—z; << d, Then, for any valug{&f'?ﬂ,

&8¢
| Ay () — Ag (2))) == }wa(t) cosktdt1, o~ ’rjlf(t)wt
[=l2; I\ y o fE

O
= .l (y) — 4 (gj{{\; o e

e ..

HEkzW,
A ) S A )l () — Ak )| <o, |Bel)! <.
| H .

This is equivalent4s ‘the conclusion of the Jemma.

The existence™af the period 27 for f(x) being understood
throughout, def’the definition of 4,(y) and Bi(y) be extended
to all realyyalues of y. For any y, and y,

. :’\\ J: S eos ktdt = Ap(ys) — Az (y).

N\

vHere and suhsequently, each relation written down for A
has a counterpart involving By. Let & be defined for each k
as the larger of the maximum values attained by | dx@)|:-
[ Be(y)iin (—z, 7}, In particular, | Ay () < &, | Bi(m)] Lo
T.he lemma just proved is equivalent to the statement that
limg—c & = 0. Because of the periodicity of f(¥) cos ki
and f(f) sink¢, the integrals defining Ai(y) and By(y) are
not altered in value if both limits of integration are increased
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or diminished by the same integral multiple of 27. For
example, if y is in the interval (=, 37),

| A (y) — dr(m)| < o,
whence it follows that | Ax(y)| < 2¢ in this interval. If 3

and y, are anywhere in (—r, 37), the corresponding values
of 4y will differ by not more than 4&;. Finally, if 3, and g, are

any two numbers subject to the condition that ly:— ] < 27, -
there will be an integer j (positive, negative, or zero) suchs,

that 4+ 2j= and y,+2j7 belong to the interval (—=, ?;:f),"
and e

| An) — )] € dae O
A similar relation holds for Bi. ’ \
The purpose of these details is to bring Qub fact which

will be used presently. For any x, and fop,duy y in (—7, ),

|77 rosinneSpar |
| cosnz{ Balz-+y)—Bnlz— %]‘?fﬂﬁﬁ%‘ﬂ?m#-gyg%“@ —mj|
;: 8 Exn 1 ‘: N .: v

or, by the substitution ¢ 2= u,
Ty |
v . )
if {@x}— 1) Sillnudu‘ < Bey
1o —s2

for arbitrary @ ahdy, subject to the condition that —m Z y
< m. (It iseledr that the interval from - to y may be
replaced b any other interval of length < 27.)
The )n\hx?ﬁ “stage of the discussion may be summarized in
ano'ghex\lemma:
Amaima 1L If (@) is a summable function which vanishes
“igentically for a—y < x < B+q, with 1>0, its Fourier
Series converges uniformly to the value O for « <z< A
The proof will be expressed in terms of the Lebesgue
theory of integration, and, unlike those that have gone before,
wonld have to be appreciably modified in form if reference
to that theory were to be eliminated. A more elementary

method of proof appropriate to the case of functions bounded

and integrable in the sense of Riemann will be indicated later.
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Let = have a -value belonging to the interval e <« < 8.

By the usual formula,

. 1 {7 .. . sinfre+3E—x)

1.\ - — | — — dt
Spla) = — Ji;:'f 0= 31n?g(t—~ir)

1 W
e ‘2rr_.J f(z)cot (t—x) sinm (f —a}dif

T

1

i
2\

The second of the two terms making up the last P\L}ll’:‘i‘--lell
iv equal to 3{a. cosnax+ b, sinwsl}, and appm@(\h% Zero
uniformly for all values of x, as an immediaté\ onsequence
of the fact that a, and by, approach zero. \\¥

In the first term, let i —2x = u. lx‘l(sn’ the integral is
equal to (¥

b3 \l\
Julx) = r Sla+ u)cokf—-\y sin nu du.
www.dbr aullbrary brg in
Let '(#} be a function of Speriod 27 which s eqnal to
eotdu for —m S w < —qfand for 4 << w < 7, equal to 0
fOT—l?z Su<iq, apdso defined for —y a1r< — 17 and
for o <Zw<g as xto, have & continuous derivative every-
where; it is searce\ly necessary to write down an explieit
formula for the €dnstruction. As f(x -l «) is identically zero
for —4 Sy, when z is in (@, 8), the integral J,(x) is
the same; ‘as"

\\x J::f (e 2) Ol sin nw da,

Y
J:“nf (@t w)sin nu du = Fly);

the values of » and o are for the momens to be regarded as
tixed. The function Fiy) has almost everywhere a derivative
equal to flz-+y)sinny. Consequently, as (i) is differ-
entiable everywhere, the funetion F(u) Cluw) has almost
everywhere a derivative equal to F'() CQu)+ Flw) € (20
Furthermore, F{u) is absolutely continuons, and (n), having

4 5 f(_t) cosn(t—z)dt,a N
- \

QP

*\
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1 bounded derivative, is absolutely continubus also. Henee

- F(u) C(w) is absolutely continuous, and its imerement over
an interval is equal fo the integral of its derivative over
the interval, That is, in particular,

Fia) C(x) — F(—m) C(—)
— fﬂ F'(w) Ow) du+ J:; Flu) O (u) du,
Jeulz) = J:{ F'(w) C(ﬁ) du ' | \<
= F(n) O(r) — F{—a) C(—n) —-fH.F(u“) (o (trf dif.

But O(r) — O(—m) = cot(-£4m) = 0. By an)earlier
paragraph, | F(u)| < 8¢, for —m < u <=, where & i in-
dependent of z; if w is the maximum of the gontinuous fune-
tion '€ (u)|, which is independent of x.and =,

Ipla) = 1fﬂF(u) 0’(14?.?3@:

80 Jn(2z) approaches zerwmnmﬁ;ﬁ[yjmwﬁhsg,mlues of z in
question, S.(z) does likewis;e’,fand the lemma is proved.

Tt follows at once that #h.r(z) and ¢ () are two summable
functions, identically #qiral for «—g <@ <. 8+1n, and if
the Fourier series £T)y (z) converges uniformly to the value
¢ (@) = fla) fore =22 < 8, the series for f(z) does the same.
In particular,Fheorem I may be further supplemented by

CoroLLARWH. If f () s a summable Sfunction of period 2m,
and if ?h?'l%“és an interval &« — g < & < B+ 7, 120, through-
out whntk f(x) is continuous, with & modulus of continuity w(d)
s-u-c?gﬂkat limy_, w(d} log d == 0, then the Fourier series for

. f{x) converges uniformly to the value flz) for ¢ o< A

\ 3

A %
< 16mpe,.

2. Convergence of Fourier series under hypothesis
of limited variation
As the next pages will be concerned largely with functions
of limited variation, the insertion of 2 proof of the theorem
about the convergence of the Fourier series for sneh a funetion
iz not out of place.
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Let f(x) be a function of period 2a, having limited
variation over any finite interval. Since a shift of the
origin from which « is measured does not change- either the
character of the function or the terms of its Fourier series,
when sine and cosine terms of like order are taken together,
it is sufficient to consider convergence for z = 0.

Since f () is of limited variation, its discontinuities, if any, /
are finite jumps. Let ¥{z) be a funetion of period 25 wh.ich\\
is linear for 0<x < 2m, and further defined by the o
ditions P(04) = £O04), P(O—) = PE@r—) = A0,
#(0) = [ SO+)+ 0. 1If flo)is continuous fory = 0,
Y (x) is merely a constant. If f(z) is djscontinuo@:}or x =10
Y(x) is equal to the comstant 3 [£(0-+)+0—)] plus an
odd function, and its Fourier series consistsyof this constant
plus a se_ries of sine terms, all of whichy v}rﬁsh at the origin.
So the partial sum of this Fourier serib§ pot merely approaches
¥(0) (in acecordance with Corollary"I” above) but is always
exactly equal to w(0). As {{s{:):‘;—f'w(m)—]-[,f(x)"—w(x)],
the problem of “éﬁmg%lé'é‘ﬁéb?%?&ffﬁ)]]}-educes immediately to
the corresponding problent™for the difference f(x)— (),
which is continuous at\the origin, if f(z) is defined for
* = 0 as equal to the mean of its limiting values. There
is 'no loss of geperality therefore in assuming at the outset
that f(z) is continuous at the origin and vanishes there.
This assumption’ will be made henceforth. '

By the/hypothesis of limited variation, J(x) can be ex-
pressedfor —n <z < 7 in the form f(z) = g, (¥) —gs (@),
whpg} 9. and @y are bounded and monotone increasing
tiroughout the interval, are continuons wherever fla) is

\m‘;‘mfnﬁﬂ“mﬁ, for z =10 in particular, and vanish for x = 0.

Hor the study of the eXpression

80 = o S5EE e
let T

i = [ BB
n .ﬁ?l(t) 2 sin 3 dat,
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let ji»-be the integral similarly formed with ¢, in place of ¢,
and let js; and jee be the corresponding integrals from —
to 0. Then &, (0) = (1/7)(Jui—71s FJjeor —Jas)-

If & and &, are any two numbers belonging to the interval
(0, n), and if » is any positive integer,

‘fg.'gl-wdt‘gSm o
g, 2sinid ! N\

For the integrand is alternately positive and negat.ivg:dv@r
intervals of length 7/(n- %), the arches of its graph\dhmin-
ishing steadily: in height from left to right. 'B{é’integral
over an interval corresponding to any number of'\ﬁwﬁole arches
is therefore a sum of diminishing terms ofjalternate signe,
and its magnitude does not exceed that efjythe largest term,
namely the avea of the first arch inyolved. The integral
from any & to any & is made upit)Worst of such a sum,
plus the integrals corresponding to'parts of two other arches.
But the integrand, being equaldé A cos ¢+ ... - cosnt,
never exceeds n--3 in a%\siéffh b value, and ¥He area of any
one arch, with base 7/{(s%3), can not exceed @, So the
magnitude of the integral from & to & can not exceed 3.
(It is almost as ea§y-to see that the value is actually less
than 2n, and fstill lower bound could be obtained. but the
irequality as .\m;rif-ten is sufficient for the purpose in hand;
the essenti{lthing ig that the right-hand member is independent
of &, #nland n.)

If @ § < § < & < m, the number ¢ being regarded
aggited,

~\J (5 g . i 3
N i sin{n+4)¢ ,,0 . 9%
N Jﬂ 2sin,}t"_d‘;=“ ity PR

For the absolute value of the integrand never exceeds ¢4, and
the magnitude of the integral can not exceed the sum of
the areas of three arches, each of base m/(n-+3$) and of
height not greater than cg.

Let ¢ be any positive quantity, and let ¢ be chosen (by
virtue of the continuity and vanishing of ¢, at the origin)

5

1
sin

=
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so that p, (8) =< &/(6m), The integral defining j;, may be
taken as the sum of the Integrals from O to d and from ¢
to £. The second law of the mean may be applied in each
of these integrals, For that from O to ¢ it gives

sin {n -+ )i sin ( Jg}t
R N n [ 8t

where & has some value in the interval (0, d); by the second\\
paragraph preceding, the absolute value of the mtewak s
the right does not exeeed 37, and conseguently that @b the

integral on the left does not exbeed L, for any u{l‘u«e of .
For the rest of 7,4,

[ o () 22 ("'H'i)t dt = g, (d}J N (” AT

£ zcmlt

the new & being, xl\}}wtll%rlﬁﬁ%\@ﬁ@l?}n here ¢ (6) < ¢, (),

and the ‘ﬂ)qolute value of “each integral on the right,

by the preceding paragraph, is less "than or equal to
3meg/(n+3). So Q\

L 67 ¢y
‘Jnsp [)‘S»ln_(jz___ﬁ_]tm‘ 7 egp ()

2 gin n4+i

nty
which is less} fian 4& as soon as n is suffieiently large. This
means thmt T approaches zero as % becomes infinite. By

mmlia%tfeatrﬂtﬁnt of jigy Jui, and jpe, it is recognized that
S»{@\approaches the value 0 = 7(0).

~For functions having the original degree of generality,

\ Vthe result may be stated in the following form:

Tueorem I, If f(2) is o function of period 27 having
timited variation over o period, s Fourier series converges
to the value f(x) at every point wheve f(x) ds continuous, and
to the mean of the values approached Jrom the right and from
the left at every point where f(x) is discontinuous.

It f(x) is discontinuons st the origin, the details of the
above calculation apply properly mnot to f£(x) itself, but te
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the difference f(x)—1 (x), the retention of the symbol f(z)
having been equivalent to a change of notation. TLet it he
supposed now that f(x} is continuous throughont, Then the
complication just mentioned does not arise {cxcept for the
subtraction of a constant to make f{0) = 0, which ig of

no consequence). The functions ¢ (%) and ¢, {x) may be
taken as the positive and negative variations of fF(x) itself .
(in the sensc that ¢ {(x) is the positive variation from 0 to SN
x when & is positive and minus the positive variation fr@r’n:;,
z to 0 when & is negative, g. being similarly deﬁned).ig}he"
use of the origin as representative of an arbitrary peint a,

in the convergence proof amounts to another, xf;l}. nge of
notation, in connection with which ¢, {(6), in’}the COuUrse

of the reasoning, takes the place of ¢ (;c:q-:fiﬁ)—u@l (20)
Under the present hypotheses, ¢, and'gr;-z\ ‘are everywhere
continnous, and so uniformly continneps,s Hence the choice

of d, if the proof is written ont in iﬁgﬁﬁs of the general no-
tation, can be made independentht,Of&;;"g. For any x,, further-
more, @, o + ) —g (o U)W\é!ﬁfdd%}‘z 9°lol hpa{l'. EI"%; ]CTU) can not
exceed the total variation of{f(x) over a period, a quantity
likewisc independent of g These are the essential points
needed to justify the,gﬂhwlementary assertion:

CoreLraey I I, fﬂx) setisfies the hypotheses of Theorem 1k,
and is furthermded continuous everywhere, the Fourier series
converges to X uniformly for all values of x.

It it is agsuited merely that f'(z) is of limited variation for
To—n S/ 2,44, and summable over a period, the
functjqi‘gp (x) which is equal to f(x) for vp—4 L & < o+ 7,
andyidentically zero over the rest of a period, is of limited

\'iza;riation over the entire period, and its Fourier series converges
£ 2 to the value [ (ro ) gl = [f (o) -+ @),
from which it follows that the Fourier series for f{x) does
the same. If f(z) is continuous and of limited variation for
@—% < 2 < 8+y, and summable over a period, the
function ¢(z) of period 2x which is equal te f{x) for
“—n<x= B+, and linear for Sty <2< e—y+2n,
18 of limited variation and continuous over the entire period,



48 THE THEORY OF APPROXIMATION

and its Fourier series converges uniformly with ¢(x) for its
sum; the Fourier series for f(x)— ¢ (x) converges uniformly
to zere for ¢ <o < #, by Lemma II; and consequenily the
geries for fF(x) converges uniformly to f{x) for « < = =< 8.
These conclusions may he expressed as

CoroLrarY 1L If f(x) is a function of period 2n, summable
over ¢ period, and of limited varigtion for go—4 == o« = :ro-irq\,:
its Fourier series converges for x = a, o the ;:a?%
@ t)Y+Flae—)); if Flx) 45 of period 2m, sgwfmaﬁie
over & period, and continuous and. of limited variation for
o—g <<z 8+, s Fourier series converge.s:.@éﬁrmly to
the value f(x) for « <z < 8. (v

It may be uoted in passing that the\seeond law of the
mean leads to a proof of Lemma IT for functions that are
bounded and integrable in the sensé ®f Riemann, without
the nse of Lebesgne integratiun.;.\lh the expression which
was denoted by .7,(z), in the pravf as given previously, let
the integrals from v-aprd@libed prddiam 7 to = be considered
separately; the integrand is identically zero for —y < w < 1.
Since cot }w is monoponé from 5 to &, and cot{m =0,

1 ,'“:\\ 1 &
J:lf(x%-u} cot —é.-’u\éi’nnu du == (cot 5 q)f Slz+w sinnudu,
\ ]

where £ i, }a.’ﬁumber of the interval (4, m). The magnitude
of the last“integral does not exceed the quantity 8=, which
is. %t@g?péhdent of 2 and approaches zero as % becomes infinite.
Sidiflarly it may be shown that the integral from —# to —7%

_~approaches zero uniformly, and the conelusion of the lemma
~\Jollows at once.

3. Degree of convergence of Fourier series under
hypotheses involving limited variation
Attention will now be directed once more to guestions of
degree of convergence. The next theorem is a rather simple one:
Tueores L If f(x) is a .function of period 2m with

limited variation, the total variation over a period being Vs
then, for n >0,
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| 3 ! Vv H T : . ¥
|I_R flx)cosnx dxl = P ’Jjﬂj-(a:) sin nx dx < P

Let o,{z) and @ (x} be the positive and negative variations
of f{«), starting from the point —=, so that f{x) = f(—a)
+gi(a)—os(@), p—n) = go(—n)=0. Since f(x)=[f{—n),
g () —gs (m)y == 0. But p(n)-+¢:(n) = ¥, and therefore
g, () == ¢; (m) = 3V. By the second law of the mean, '\\\

28 )

Ji;?l(w) cosnrdr = 991(“)1?808?3:5(13; x"': )
1 ginnw-—sinng @mﬂs
:TV( _ T
" SO 2n
(T : v RO\
J g, (x) cosnxdx ;’2”\ »
Similarly, oV
| A
f!rl @E(T)Gﬂsnscdxl s

while
f A= :,%'jw dhraulotbra Y g & in

S0 the first inequality of “bhe theorem is obtained. A mechan-
ical repetition of the m\a,éomng for the integral with sin nx
wonld lead to the éxpressmn cosnf-—cosnmx in pla,ce of
sin e —sinné, @ud the new expression has the maximum
value 2 mstea(kof 1, since cosnm +0. But by virtue of
the perloﬁmty the integral from — 7 to = is the same as that
from —A3Tn/(2n)] to =+ [7j/(@n)], and if the variations
arc méasired from the left-hand end of the latter interval the
um{e”ﬁ’huund V/n is obtained once more, as stated in the
“theorem.

A Suppose now that f(z) has a first derivative with limited

variation, and let ¥V be the total variation of f'(x) over a
period. By integration by parts,

I f@) cosna dy = {Lﬂ:)s’m—“m} 1Ff (@)sinnx dz |
=— L[ roysmnzae,
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whenee it follows further, sivee Theorem L i applicable to
the last integral, that
o | S &
) flyeosqnda == | gLy sinone e
e w HoeleT

G .

"o

Similar reasoning applies to the integeal with <in nz in

place of cos max. Repetition of the process of integration o\

by parts leads to the following: A
CorROLLARY 1. If f(x) is u finction of peviod 2m which?)

has a pth derivative with limited vaviation, p 7 0, z‘!'i?{ii?:f 4

is the totad variafion of £ () orer a peviod. !fwu‘:j'{if‘r‘tf?* 0,

7
W

:,E,.--f'(-""} cos N da . ”:H . J :,f'(.r) ~in -n'.;-‘:l.é\‘- L “?L-] .
\/

The conclusion is really somewhat nl(n"(}\gcucral than the
statement would indicate. Suppose ﬁﬁ';ﬁhnpticit}' pnee more
that p = 1,  As will be seen ;m"ﬁrv—exumiuution of the
proof in the light of well known ¢heorems on Lebesgue inte-
grals, the essenﬁﬁ"iwtﬁ?ﬁ'gaulé h%ré,ﬁ;%tu} {:} be uniquely de-
fined at every point, but t 151&}'(;5) be expressible as the in-
tegral of a function rpx(q.\'k\) limited yvariation:

* \\’: 7
= i+ [ g @aa,

for any \-'alu,c‘..\ot' . This observation is of some interest,
since the.§§gcﬁilest functions represented by graphs with cor-
ners satisfy the modified hypothesis, but not the original
one. \The generalization carries over to the applications of
the €orollary in Theorems TV and ¥b bhelow.,

_YFor the sake of another corollary, let f(x) be identically

V4
2ero for 2y —y < 2 <y 4y, and of limited variation over 2
period. 1t S, (s

7o) I8 Tepresented omce more by the formula

I (- _ 1 & . l
B litg) = Tz;f S+ cot-2-u sin s do
)

.1 M ,
T Sy 5 n) cos nu du,

—
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both f(ze+u) and flao -} cot Fu are of Jimited variation,
vegarded as functions of w, and consequently |8,  s)! does
not exceed a constant multiple of 1/n.  With rcgard to
uniformity of convergence, let f(z) be identieally zcro for
w—y <z << 8-, the hypothesis of limited variation over
a period being kept unchanged, When « <y < 3, the
function flo—+ ) cot d# is identical with (- C (), if
() (w) is defined as F(]udl to 0 for 0= lw; <7y, and equal

to cot du for ¢ < |u!<aw. In general, if ¢ () and g, (?;): N

are any two functions of limited variation, the total variatioh
of g, (u) being V; and that of ¢, (n) being 73, and it M,
and M, are upper bounds for | e, ( s (1) re’spt’}}tn‘el),
the function ¢, {ut) g2 (2) is of limited variation, aud its total
variatien does .mot exceed M, Vo4 M. V,. InNthe prescnt
instance, (1) and g, («) being replaced h:v o f (g - -w) and
O, () respectively, Fflao-+u) has the\o.qme total wvariation
over a period and the same bounds ag ﬂJ), for any value of
xg, and O () is independent of za) s0 that the total varia-
tion of flx, -+ ) cot Lo, WHIlE dﬁf“é‘é‘llfﬁéﬁfjf AEent for dif-
ferent values of x,, has an prer hound independent of xy,
as long ‘as w, belongs to, the mterval (e, £). Such an upper
bound can he calculated\mme specifically as the produet
of V, the total varfation of S(@), by a quantity depending
onty on 5. (The (@bsolute value of #(z) can not exceed V
anywhere, sinpeCévery period contains points where f(x)
vanishes.) I\js possible therefore to state

Coaom{ﬁy‘n. If flz) is o function of period 2n with
h’méted v;}vmfwn, the total wvariation over o period being T,
and ‘sz(r) vanishes identically for «—5 <& < 8-+, then

oo\’

\ 8 (2): M_(};I

#

Jor a <ax < 8 where Sy {(x) is the partial sum of the Fourier
series for flx), and Cy depends only on 7.

Each of these corollaries, taken in conjunetion with results
obtained earlier, leads at once to a theorem on degree of
convergence. If p = 1 in the hypothesis of Corollary I, it

o
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is known that the Fourier series for f(z) converges uniformly
to the value f(x); this follows from Theorem [X of Chapter 1,
and more directly from Corollary I or Corollary ITa of that
theorem, since the hypothesis provides f{»r) with a bounded
first derivative, and

o) — )| < 2wy —ay |,

if 1 is an-upper bound for |/ (z)|. On the other hand, Corol: £\

: . . . \
lary I, interpreted in terms of the Fourier coefﬁc:ents,\
states that (M

| ] < V(mnpt)),  |b| < Vigae: sy, O

Hence _ \
& O
F@—8@)| =| 2 (acoska-+besinka) | L O
k=nt1 'O
< b B )
= k:n-{-l(lak +1oeD .*é}\“

<o $ V2 4w _ 2V

v wkett = g ), WPt pawd’

The conclusion“wdbgammwéﬁéﬁﬁ
Theorem IV. If flz) s @ function of peried 2m which
has a pth derivative with Wmited variation, p == 1, and

if V is the total var-{aﬁ}g}a of f P (x) over a per-iocf then, for
1>, ¢ \\

) — 5, )| < LV o @V

G

. N4
where Su (), 98 the partial sum of the Fourier series for f(z),
Qy is aztgfcsmnt depending only on p, and Q i an absolufe
constgnis more specifically, Qp = 2/(pn), @ = () = .
Xus result is to be compared with Theorem X and the
~Lorollaries of Theorem IX in Chapter 1.

\, Corollary II will be combined with Corotlary II of Theorem IX
in Chapter I, and with the theorem just obtained. In connection
with the result from Chapter 1, it is to be noted that if /(@)
15 a continnous funection which is nof identically econstant,
and if «(d) is its modulus of continuity,

Hm inf_f"—(f?l =,
&=y '5
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For if this were not the case, it wonld be possible for every
¢ (0 to find arbitrarily small positive valnes of ¢ such that
w{d) = ¢6; for any such &, |/ (x) — fla)! < elaw— 2|, if
e —2, 15 an integral multiple of 4, sinee | f(x, + N &) —fFlz,)!
< Nw(d) < 6. Nd, if N is integral; but for any choice of
@ and z., it would be possible to find values of 4 satis-
fying the condition that w(d) < &4, and so small that 7, —a, .
differs arbitrarily little from an integral multiple of &; and'\\
then it must stil! be true by continuity that If(xg)—f(gglz)].:
<Z s'gy —ay, which in view of the arbitrariness of ¢ nregns”
that F(m) — fla) = O for all @ and a, cont.rar{gtowthe
hypothesis that f(x) is not constant. The eonclusiprmay be
stated by saying that »(8)/d has -a positive loyel bound for
values of ¢ that arve sofficiently small; asded) itself has
a positive lower bound over any intervalorlbf-‘“i“e'dching to the
origin, it appears further that m(d)i"thaﬁ' a positive - lower
bound over any finite range for ¢. ()Y
Suppose now that f(x), having, the period 27, is con-
tinuous with modulus of contTREHFHASY 6@ LG & < 849,
but not constant over the ififerval, and of limited variation
(but not necessarily contiuous) over the rest of a period.
Let ¢(z) be periodi,c\“}rith period 27, equal to f{x} for
a—y g < f4g,5and linear for §4+ 9L 2 < e—r+ 2
In the latter int,ef}'al, the modulus of continuity of () is
4 constaut maltiple of ¢, which by the preceding remarks
does not ex@esd a constant multiple of w{d), say kw(d), over
the.l'an‘gg'tii?ifhirl which o(d) is defined, namely for 04
=8 —-\}—r 29, If § satisfies the Jatter condition, any inter-
valoef length ¢ is made up at worst of an interval congrnent
\'rﬁliﬂﬂuio ) to (849, @« — 5+ 2n), together with parts ot
%o intervals congrnent to (@ —g, 8-F7), and 50 ¢(x) has
everywhere a modulus of continuity o;(6) which for ¢-Zd
< B~ e 24 does not exceed (% -+ 2) (d). By the corollary
cited from Chapter I, ¢ (z) differs from the partial sum of its
Fourier series by not more than Aw (2x/n) logn, and so
by not more than A(k + 2) w(2 a/n) log %, it # is large enough
$0 that 27/n comes within the specificd range of values for d.
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On the other hand, F{x) — w(+} is of limited variation, and
identically zero for o — 4 =2 x = 8- g, s0 that the recent
Corollary TT is applicable; and the quantity 1/n which enters
into the conclusion of that corollary does not exceed a constant
multiple of @(2a/n). Ho it is possible to state

THEOREM Va. If fhe funchion f(x), of period 2m, is con-
tinuous with modulus of continuily w(0) for o —n o < B+,
where w(0) >0 for 62>0, and of Dmited variation (but nof
necessarily continuous) over fhe rest of n period, then

)

Sy —Sa(@)] = co(@n/n) logn W

L 3
~
NS

'

Jor o < x < 8, if nis large enough so that &izj)‘\ftfﬂ) has
a meaning, Su(x) being the partinl sium of el Bowrier series
Jor fla), omd ¢ o constant depending neithe/\pm x nor on n.
The combination of Corollary 1I wifh) Theorem IV (or
rather with a part of that theorem) \phoceeds with a little
more facility, Let #(x) be a function’ of period 25 having a
first, derivative with limitefdsraripppifor e —y < o < 8+,
while f(z) itself is of limited" variation over a period.
Let ¢(2) this time be ofSperiod 27, equal to f(x) for
a—g <z <B4 g, and"defined for A+ 4 L < w—y 27
a8 a polynomial of, the third degree so that ¢ (x) and its
derivative Have determinate values at both ends of the interval.
Then ¢ (x) has afirst derivative everywhere, which is of limited
variation ovema‘period, and £ (x) — ¢ () is of limited variation
over a pefiod and identically zero for ¢ —g < z < 8-+ 17
It reniaing to apply Theorem IV to 9 (x), and Corollary I1
to flw)—y(x), and the following theorem is obtained:
_ “Mukorey Vb, If the function f(z), of period 2m, is of
\ iﬂ?n{ied variation over o period, amd has a first devivative of
limited variation for «—y < » < B4, then

| f @) —8a(@)| < —
n

Jor w < w < B, where 8,(2) is the partial sum of the Fourier

series for f(x), und ¢ is a constant depending neither on &
nor on .
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Space will not. be taken here for the working out of more
elaborate combinations of similar character. A theorem re-
lated to Theorem 1II, however, will be obtained for the sake
of a subsequent application.

Tt was shown early in the chapter that the Fourier co-
officients of an arbitrary summable function of period 2n
approach zero as a limit. Let f{z) now be a function of

period 2a which is absolutely contimuous, and let ag, bx be

its Fourier coefficients. Its derivative exists almost every;

where, and is summable. ‘The product f (%) sin kz is hke-»;:

wise absolutely continuous, and so has a derivative al‘msst
everywhere, and its change of value over an 111 gryal is
equal to the integral of.its derivative. Specifie ky, it has
a derivative equal to £/ (z) sin ko—+%f (@) o8, Kk at every
point where f'(z) exists. Conseguently N

0 = fm)sinkm —f(— nl;sili Eiem)

—F J f (2} sin kx dﬂ?‘}’k f(i’:) COo8 k:r'dx,
. W W, d:bbauhb ~§Torg.in

Lag = ——- f Fa (:r)smkxdm

But by the thecrem clt}d at the beginning of the paragraph,
the last integral ﬁppf&clchES zero as k becomes infinite, since
J' (@) is summabley Similarly, &b approaches zero.

It was seen \a.t “the betrmmng of the chapter that

N

O o [ Flr)—Su(@)]* dx

Q

m:"\‘f' I [f(q,)]ﬂdaz:—[2 + Z(aﬁb ]

\But under the hypothesis of the moment f (), being abso-
Intely continuons, is a fortiori of limited variation, and hence
Sa(a) converges uniformly to f{(z). So fthe left-hand member
approaches zero, and the right-hand member must do the
same

LT i = 54 2@+ 0
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(It is still not necessary for the purpose in hand to establish
the well-known fact that the last relation holds under much
more general hypotheses. Use of the theorem on the con-
vergence of the Fourier series for a funetion of limited variation
can be avoided by reference to the least-square property of
the sums S,(z), discussed in the next chapter, together with
the fact that by Weierstrass's theorem trigonomefric sums
Tu(w) can be found so as to make f(z) — Thn(x) approachs™
zero uniformly.) From the last two equations, taken toget(}i({r,:

it appears that O

Ll re—sera = 3 @
L&

Let ¢ be an arbitrary positive quantity. JIit\is possible to

choose 7o so that |kax| < ()02, |k é{\b}fe)‘-‘“—’, for k2> no.
Then, if n = ny, v

O
k] o) N (]
. - J. \ z £
Swimce 3 LD (Taw _ =
B dbrad BB g in O
which means that™ TE

Hm » .g,f’(ai—'{— By = 0.
n=oy 1
The results of thelast two paragraphs may be snmmarized in
TlIEQREM VI'.. ¢ “If JFl&) s an absolidely continuous function
of period 2rmd if an, by are its Fourier coefficients,
'\\;‘ ’}izmmnan = 0, ﬂlizxrlmn b = 0,
IASN) i ] ' '
PSS sr,.(x) i the partiol sum of the Fowrier series Jor f(x),
and if va is defined by the equation

= [ Lf@) — (@) az,
then

H.]Il N¥n — Q.
=
The first part of this the

orem supplements Theoerem I1I:
the products N tty,

%by are bounded for any function of limited
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variation, and approach zero if the hypothesis of limited
variation is replaced by the more stringent requirement. of
absolute -continnity. The last part of the theorem will be
used in the next chapter. '

4. Convergence of the first arithmetic mean

The next undertaking will be to outline a theory of the
convergence and degree of convergence of the approximating ’\\
functions. with which the name of Fejér is associated, the ﬁ]‘ﬁt
arithmetic means of the Fourier series for a given functmn
The mean in que%tlon is defined by the identity A\

i) = o[ @) + S @)+ o+ Sy (zn’;.\

where 8(x), as usual denotes the partial sum of the Fourier
series through terms of the kth order. 7"

It will be recalled that the fundamenta.l integral expression
for Se(z) involves a factor sin (k=44 [~ 7), and otherwise
does not change with %. @%‘Q@%’ftﬁo&f&% expression

sin 1 v + sin 3 u:‘};f:‘- .+ sin (n — ‘l) v
2 2 N 2
by 2sintv can be rear?anged in the form

[1 — cos o] 4| GOSb"—xOb 2]+ .+« -F[eos (n—1) v—cos nv]
=Y — cosny = 2sin® (nv/2).

s\..

Application bf“t]ns identity, with ¢ replaced by ¢t —w, gives

“s‘

\\ o () =

+

sin®fn(t — 93)
2sin®4 (£ — a1

NS
‘.

”ﬁl;‘ dn terms of a new variable u = %(f—w)!
' 4
1
na J-=e

If (sin®nu)/(sin®«) is denoted for brevity by @, (u}, the ex-
pression hecomes

O () = % f:;f(x + 2u) @ (u) du.

Slll ﬂu
sin® u

f(x-I-Zu)

O (37)
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The fact that the trigenomoetrie factor @, () in the inte-
grand, unlike the eorrvesponding factor in the expression for
8, {2), is never negative. hag important consequences, and
raterially simplifies the reasoning. If /() in particular is
identically 1, each Sp(x) reduces to the single term 1. and
a; (x) also is identically 1, for all values of #:

1 " sin*fn(t—x) 1 J':.’ Q
1= = T ) \
na J-= )“““1(3——0”( N = ”("]"”

:st

More generally, then, if f(x) has M as an upper, lﬁuund for

its absolnte value, CN
1 >’
o5 () <L - j(; -+ a9 "Dan ihue
= nme-ome

[ii -

nir

1 =2 ) \
—_ I-r:z M, (o), {n’Q‘w = W

P If@ <M for ell values of J,Qﬂ}:?l vy () s M for wdl
salies of x likewise, and for adh, abues af 7.

For any specified dhhw'oﬁ%a"bﬂ?egiﬁbnut\ in the preceding
paragraph, multiplied by ~Lhe quantity f(x), which is constant
as far as the variable~ c¢ Integration is concerned, stafes that

..x 1 -

f@\i ’n*c —mia" f(:r) m (tf) dit’
whenee O
N (::,) *‘f@") J CLfle 4+ 2w — flo)] @ () du.

@)po»e now that f(z) is snmmable over a period, and
gontimmons for x = #,, Tt & be an arbitrary po:,ltne

N 1\ quantlts and let d < /2 be chosen so that Sl 2u) — flow):
Q7= befor |w) < 8. Then

5
| nnpr [.f (’LU—I- 2u) -—f(a,[,)] Dy, () doe g 1 ) if@;a(n)mt
1 Ti2 . ; 2
= an _x___}—‘)—e Dy, (1) du = ?E,

for all values of #. On the other h

and, since ®, () =2 1/(sin®8)
for & =2 [o| n/2, =
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i 1 ,l;_..d‘ rﬁﬂ) ( 1 :
— 2o+ 2u) ~— flag)] @ ( g
mn( wo T by 020 — flaol] @ () due

1 T . .
* pasinid I—.—rm ot 2u) — flan) dus

I

the last integral exists, by the hypothesis of summability,
and is independent of #, so that the whole expression is less
than L& as soon as n is sufficienily large. Therefore &
A (uao)% flow) <Z&, when = is sufficiently large; o, (xn)\
converges toward f“(a"u) If f=) is continnous ewerxwﬁér‘é,
oy () converges toward f(z) for all valnes of z, md the
convergence is uniform. For d in the proof can \'Qf"‘l‘hﬁ‘a(’ll
independently of xo, since f(x) is uniformly Lathnuous, and

if M is the maximum of |f(x):, \
T
j(ar,u—-—z?u) — flao) . daf X« Zi‘z{ﬂ',
—/2 \ "\

which is likewise independent of &

For convergence at a omt of dﬂconﬂnultv let f{x) be

au i
summable over a period, an&”hm fnit §1p for # = &y,
Let flop) be defined as thé mean of. the lmntb approached
from the right and frem the left. TLet a function ¥(x) be
defincd by the mqlu(e}ent-n that it shall be of period 2m,
and linear for ap =7 X a2 27, and that ¥ (xy ) = s oy -1—),
Wi, —) = j‘(:ir,-;'—m)? wixy) == flzy). For x == &, each
partial sumPef’the Fourier series for ¢ (z) is exactly equal
to L’J(%J (A< was pointed out in substance at the beginning
of thy Wooof of Theorem II. The same is true therefore of
the Nlthmetlc means of these partial sums. But f(z}is the
:Sum “of w(z) and a function continnous for x = %; and the
< \ifithmetic mean formed for the smm of two functions is the

sum of the corresponding arithmetic means. So the arith-
metic mean o, () formed for f(r) converges for = = 2 to
the value f{x).

The results on convergence obtained thus far may be
restated in

Tueorey VIL If flz) is o summable function of period 2m.
ond o, (%) the arithmetic mean of the first n partial swms af
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its Fourier series, as defined whove, oy () convergos townrd
S} at every pond where fx) dis continuous, and converges
toward the average of the limits upproached from the vight and
Jrom the left al every point where flx) has a finite jump,
If fla) is continuous everywhere, the convergence is wriform
throughout.

It should he mentioned as an immediate eonseguence of & (\\
definition of the aritkmetic mean that 2f S, (x) converyes cztmg
poind, o,(x) converges fo the same colue, In fact, if Sy, SP bg, -
is any convergent sequence of numbers whatever, mnh Himit S,
and if o = (S, + 81+ ... +S,_1)/n, then g, dk}x chnverges
to the lmit 8. Let x‘)—b; == By, and lPt .\\he- chosen so
that | Be|<Zde for X2 N. Then, if n 2 A

§—gq, — ?l.&g——(b +&+ .. _]_:_“_1)
n )
Bok Bit oo B
www.dbl'a,lgllibfcfl‘y_org_in
_ Bt - FBvi | Byt oo T Bui
== ~ R A R B
p #
e \
the last fraction .is‘}ess than ¢ in absolute value for all
values of n>1\ and the preceding fraction, in which the

numerator ig, mdependent of n, is less than 4& for n suffici-
ently large\

x\’
o P\gree of convergence of the first arithmetic mean
\As'a first hypothesis for the study of degree of convergence,

»\let Sz satisfy everywhere the condition

\flae)—fla) | < hjay—a .
In the integral expression for o, (i} — flx),

FEteun)—fx): <220,
50 that

| e piat 21 iz 1
1 In () —f )" Py J:,2|tti @ () dy = ;‘t; ,  #@atu)du.
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In dealing with the last expression, it is to be remcmbered
that /sinw < a/2 for 0<Zu < a/2. Let the integrals from
0 to 1/n and from 1/m to m/2 be considered separately.
In the former, let the integrand be expressed by the formula

sinpw

— . sinnu.-— ;
s i I ,
. \\
N
of the three factors indicated, all of which are positive fof )’
0« w = 1/n, the first does not exceed =/2, the second does -

not exceed 1, and the third does not exceed ». Henge

w Dy (n) =

ON
" fn R 1 \:
Jﬂ # @y () du < 5 O
. A
In the integral from 1/m to =/2, ¢
2 o
1 3 N T
w® () == - ginfrulo S —/—
() sin® L= 4w’
and www,ql!jrwérfﬂjbrary.org.in
WLl - T2 ¢y
3t g T T
_ P " d'{'f g ..... . \'L' — —(10 1 ]0 7il.
Jl,fﬂ, n () = 4 .1{”"?5 4 g 2 ' g !
N\

It follows that the swhélc integral from 0 to /2 does not
exceed a constant.n}u tiple of logn, and | o, () —f (x)| does
uot exceed a ccomstant multiple of (ogm)/n. A slightly
more specifi (Shatement of the result is

Turopsm VAIY.  If f{(z) is n function of period 2m satis-
Jying \ Gwhere the condition

"\“ | o) — fla) | < A|mp—a i,

~\
\Mmz o () the corresponding avithmetic mean, then, for aZ-1,

. : £ Alogn
|J‘ (:I") — dn (SC) i é —078-— ,
"""??‘9"? (s 45 an absolute constond.
Let f(x) bave a derivative satisfying everywhere the
eondition
| f ) — ()| < & |m—m1 1%
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with a positive value of «. The error then can be somewhat
more narrowly restricted. The factor ®,{w) being an even
funetion of u, the substitution of —wu for w gives the integral
expression for the error the alternative form

. +—:12
oa(z) — flz) = — 1—J [flz—2u) —f(2}] @ulu}du
- nma 7,2 X '\
Wl \\
— J [fz—2u)— fx)] D (u)du ¢ ”':’
—m2 & s
and a third expression is obtained by taking the F\enage of
this and the ongmal one: \\

N

an{z)— fT)—— [f{:r—l—??r) Zf[’z}—l—_,({s -20)] Dal)dre.

By the mean value theorem, togeth\L w1th the hypothesis
now in force,

S+ %@Wdy’(@@llﬂawﬁﬁ%),
Fla—2uw) — ) s 2uf (),
Fat2w —2f@)-Ffilg— 2w = 2ulf & —/ &)
| Flat2u)— 2fgaf€)'}\f(x 2w < 2 Al gl
\ u i 22«—1j U e+l
the numbers §1 a,nfi %, being in the intervals (z, z + 2 %) and
(x—2u, a;z ‘hespectively, so that | & — & | < 4|u|. Hence

=
=

Y

\ 4V 20 7 ] .
{V O (x) — f2)]| < 2 f D 1L @, () A
R ) nmo -T2
4 ..\' >3
m~\./ 2ee+1 7 !
\"> = 1;1.;_2“ . uett @, (ar) dzc.
But
2
O, (w) < L o Tt R

sinfx = 4 «°

in the nterval of integration, so that

ey e~y (™ du
o) — )| £ 2 L

e’
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which does not exceed a eonstant multiple of Lin, the last
integral being convergent. In more formal statement:

Tupoven IX. If.f(x) is a function of period 27 having
a first derivative which satisfies everywhere the condition

LF () — Sl = A a—m i

with « =0, and if 0, () is the rorresponding arithmetic mean,

then
C o Ced
i (3'") — (T)l = _j;_ ' PA
where Ce is « constont depending only on . A\
No higher order of approximafion would be o,bfié't}ncﬂ by
supposing f (x) provided with additional de-rivativ}s. In fact,
the arithmetie mean corresponding to the a:;a]j;t-ic function

\',“ and the error

Floy = cos  is o, (x) == [(n—1)/n] cp®x
is actually of the order of 1/n. OO
Let #(x) be an arbitrary c{}rlt.illllpﬂé,ﬁxnction of period 2 =,
with modulus of continuity\m(ﬁhb{g@mmq%p@,pg% be obtained
in this conncetion is perhapscaf‘secondary inferest, because
a closer result is given for~an important class of cases by
the theorem following it ~hit it alse covers cases not admitted
by the hypothesis of, the later theorem, and so is not entirely
superfluous. Theproof is an adaptation of that of Theorem I1
in Chapter I. Leb.g (x) be a continuous function of peried 2 =
which is equalfo f(z) for a set of values of z dividing
a period A4t0" % equal parts, and is linear between successive
points ,B\f'\*tl'lis set. This ¢ (x) satisfies the hypothesis of Theo-
'rengfiijﬂl, with & = [w (2 n/n)]/(2 n/n), and is represented
.Pé*;\,fthe corresponding arithmetic mear with an errer not
\éxceeding a constant multiple of (2 7/n) log %. The absclute
value of the mean corresponding to the difference f{z)—o (x)
does not exceed the maximum of the absolute value of the
difference itself, which is not greater than 2 w{2a/n), and the
error of this mean ean not be greater than dw(2ain}. Hence:
THEOREN X. If f(2) is a continuous function of period 2,
with modulus of continity w(d), and on () the corresponding
writhmetic mean, then, for n>-1,

28N
€ W3
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] . p
L (o) — oy, Gyl =2 (e ( -..HT ) log .

where O i an absolute constind,
Let f{zx) be subjected to the hypothesis that

|f(~"'_') — J ) m Aoy — "

¢ {\
with 0 <& <"1, From the original integral c_zxprcssmllwfa.x
the error, ¢\

i (e z‘“: v’
0y (o) — flw) < i L 2Dy Gyl

F 13 LA / *.;‘

geTl ) (il "\\ ’

: w® o, (f¥n,
nm o N (’,Q

Let the interval of integration again l),Q,;:onsidered in two
parts, from O to 1/% and from 1/n :ag’im?. In the former

interval, NS,
¥ . Sl V27 . fgi® _
W Dn ) = e - sinS r__) = (—} 1wt
sthfardbrauli rany pitgdn = 19/
50 that NP
J‘lm i
e 0) A <2 ot
Do ﬂ{{q(t)dn < (2) 1
From ln to #/2,,0)
LAY " et 1
uf‘hi u) < —C <l
NS, n) = sinfu = 4 "o
12 W, £ fern 2 g 21—
mn = du 7 el i
WOty du = -} 22 -7 | = =W
J:; ' 3:\{3’3’) T 4 Wy e ~ 4 oJin gyt 4(1—e)

Sufos{tﬂ

£ 3
ition of these Inequalities in the formula for the error
giyes

M\ii\;:TIIE()BEM XL If #l2) 4 a fune
N/ earywhere the condition

) —f)) < 2 my—

fHon of period 2 sutisfying

H

with 0w <1, und if o, () is the corresponding arithmetic

mean, then
\ Ced
|f($)“ffn(:r;); < e

1

where Co is o constant depending only on «.
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Two outstanding facts with regard to the arithmetic mean,
as compared with the simple partial sum of the Fourier series,
are that the former eonverges for every continuous funetion,
but does not reproduce identically a function which is itself
a finite trigonometrie sum. Consideration of Theorems XI,
V1II, and X, in the order named, throws some further light
on the ability of the arithmetic mean to adapt itself to irre-
gnlarities in the function represented, and its inability to avall\\
itgelf of an exceptional degree of rcgularity. The hy p(:ntluesesx
of the three theorems imply that

Sloto)—27@) + fle—u) = hls%l ’ ‘

with a constant 4; in each case, and values Of m\successwely
less than 1, equal to 1, and greater than 3 (the present «
in the case of Theorem 1X, taking the, p]m,e of the number
previously denoted by a—l—l) 'J‘he\upper bounds cbtained
for the error of the arithmetic mean, have the orders respect-
ively of 1/n% (log n)fn“,waa‘ddﬁﬁﬁ}r@m}ﬂ&eg gorresponding
upper bound for the error of-ilte simple partial sum of the
Fourier series is of the ordet of (logn)/n® in each case.

For a concluding th\&rem with regard to the arithmetic
mean, let f(z) be of period 2n, summable over a period, and
identicaily zero forve—p<z<f+ty o has any value
m (e, 8), f(r—|—2u) is identically zero for —fr < u < $7.
Hence

N/

(»8) = ; ’?h-]- f {4+ 240) D, () dat.
nT /2

Hmce\mn(u) < 1/(sin® 17) for g ju' £ S, it follows that

!‘fﬂ(ff-‘-)i = %(J:ﬁ ; )'f(m-l—%)[du

nwsin® iy 2

! f | e+ 2w du.

nsin® 3y
Iu terms of the variable ¢ = x -+ 2u,

/2 T
) et 2wl au = 3 |7 1r0tar,

H

| | .-"A'\
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the limits of integration on the right having been adjusted
by use of the frequently applied observation that the integral
of a periodic funetion over a period is independent of the
position of the initial point of the period. 1f the last integral,
which is independent of , is denoted Dy J,
- J
o (@) = gy iy . \\

The conelusion is

TreorEm XT1.  IF f(z) is a function of peried 2?{@@-‘;’2’!(;&
is wdentically zevo for e —q S o< B+ 4, and »;‘i{f.vn.:rgz.{f.fafe: over
w period, the integral of its absolute value over u pg}@ﬁ‘?ﬂeéﬂg J,
and if o, (x) is the corvesponding arithmetic_ykan, then, for
«<e<h &

' v
T WO
IUM (1:); = _;; r."‘\ ”

where Oy is a constant depending @:iu‘f,!:m 7.

Taken with the last assertionedp: Theorem V11, this shows
that if /() is confifit@RE TP EERURIN- 2.1 4 and summable
over a period, the arithmetle mean associated with it con-
verges uniformly for ¢/ 2 < 8. The vesults obtained by
combining Theorem XIT ‘with Theorems VITI- XTI need not be
enumerated at leAgth”

6. Convergence of Legendre series under hypothesis
of Centinuity over a part of the interval

The ’t.l{";},ﬂ‘”y set forth in the early part of the chapter ean

be cawpied over in some measure to the ease of Legendre

Se}‘i?is the discussion being kept o the same elementary level

- AWHich was maintained in the treatment of these series in

yChapter T, to the extent that no use is made of an asymptotic

fo.mmla for the Legendre polynomials, The next paragraphs

will be devoted to a Presentation of the analogies that work

out most readily, though it will be seen that the treatment
is left incomplete in several particulars.

Let, S @) ve summable together with
—1Z2<1, and let ¢
Tegendre series,

its square for
x be the coefficient of Xy(x) in its
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Js—l—l

j S Xk{i) dit

g ==

Let
Salx) = o Xy (ry gy N 3 oo = et X (),

as before. By reference to the property of orthogonality of
the polynomials Xx(s}, together with the definition of @y and
the fact that the integral of [Xz(#)]® over the inferval (—1, 1)
is 2421 4 1), it is secn that

I B

T s o, . 9 . C
f__l [fld = 8 () da = J_: [f (@)]® dar - ;2_; o+ ’

As the guantity on the left-hand side can not benﬁ\z-'gative,
the sum on the right is bounded for all valmeslef ». the
infinite series obtained Dby letting ?-a'heconlp,{'u)ﬁnite is con-
vergent, and (&

lHm a/ (2814 = \?3 S

.

or, as equivalent statemenfg, . gpr auhlﬁral y.org.in

lim /i = 0, lim ;’.“ f () An{f)dt ==

fe=on h=
<

The parallelism with, the) case. of TPourier series beconies
elearer if the polynomials Ve (x) are replaced by the normalized
sequence {[(2 A+1)fz]1“’Xk(x)} or, more superficially, if it
is considercd tli%“the magnitude of the coefficient is less
significant tlw’.n\the magnitnde of the general term of the
series: it Q\ls geen in Chapter 1 that | Xx(x)] does not exceed
a comtan\t divided by &2, when x stays away from the ends
of thé\mtewzd and consequently

\/ lim e Xy(x) = 0

h=w

wniformly throughout any closed interval enterior to (—1L, 1),

Let (%) again be summable together with its square, and
suppose now that it vanishes identically for oy —v = 7 = 2o,
the interval (z,—4, 2+7) heing contained in (—1, 1). The
value of S,(r,) can be expressed in the form

5*
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_ n+1 T .,
(@) = =— )(,m(xo)J_1 P X () dt
nt+l ‘1 At
T - X (o) 1_1 o — ¢ Nt

Each of the quantities X,4q1(%). Xn(ao} is loss than a con-
stant divided by »'2, and the factor in frout of each integral . £
is therefore less than a constant multiple of #¥?; the quans
tity 1/(zo—¢) is bounded over the range where f(’t)f-isﬁ‘
different from zero, and f(£)/{xy, — #) therefore is summiable
together with its squave; consequently, by the preceding
paragraphk, the product of either mtegral by a.\'gjﬁan_tity of
the order »'2 approaches zero. In other wards, S, (zo) con-
verges to the value 0. If two functions /' (x), ¢ () are identical
for wy—9 < 2 < x4, the Legendre seriés for their differ-
ence converges toward zero at the pefut wx,, and the series
for f{z} and ¢(xz} themselves converge or diverge together
at that point: tbsumm&bg@w@baf@eo}&y&ndre series for a given
Junction at an interior point 4fMhe interval (—1, 1) depends
only on the behavior of the Fumction in the neighborhood of
the point. \\

As a Preliminary.. Q\Js{ discussion of uniform convergence,

let £{x) he any ssummable function with summable square
over the inteyvalM-—1, 1), and let
A\

27 a) = 1 ro X,
P\
It is ;m\be shown that k% 4x(y) approaches zero uniformly
‘f‘ga'\"—r-' 1=y=<1. The proof is largely a repetition of the
" egrresponding argument for the case of Fourier series, but
there are differences of detajl which are not altogether trivial.
For any fixed value of ¥ 4x(y) is the same as

| £0 xwar,

it fi () is a function equal to f£(f) for —-1 < t<y, and
vanishing for y <t < 1, and consequently k2 4, (y) approaches
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zero for the particular value of y in question. Let ¢ be any
positive qnantity. Let

ag) = [ ror

This fanetion is continuous, and therefore uniformly eontinuous,
for —1 <y <<1. Let d be chosen so that

éﬁ(.éfz) —AGn), < (15)-‘ \\

(s.x

whenever |y; — 4, <7 6, ¥ and ye being points of the mt~er-
val (—1,1). Let Nbe the smallest integer such that, [N 6,
and let = —1-+24/¥), =10,1,-.., N. T}(Q~p01nta #
being finite in number, there is a %’ such that Aidi(e) < 1e
for all the values of J’ in question, wheneyvenrk = Y. For
any value of y in (—1, 1), let § be thaioné of the numbers
0,-++, N for which 0 < y—z <22 \\5\3 and let Z = z.
(‘onsuler the difference

Auly) — 4425 f”‘ﬁ% oK T

“

o“\
[rw ww:\lvf Lretae [ (X0

\ = [A(y) — A(2)] f [Xx (D) di

By Sehwarz's inequality,

G0 £bw—ia) [ b a
’\ N/

Q) g( ) zf(2;+1;&(l&] T
C‘{Y:@tiuently

™ B2 dp(y) — de(2) ]| < i e

=

This is true for any positive value of %. On the cther hand,
if k=2 k', 121 4(Z)' <2 }e. For such values of &, therefore,
km|-'ik(.})|<\6 and A’ is independent of y. Let & Dbe the
maximum of | 4, (y)! for —1 <X y < 1. The conclusion is that
llmk aok”“ & =0,
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Now let £(x) be summable together with its square over the
interval (—1, 1), and identically zero for e —g S o< 47,
where —1 < e — g8+ 5-21. Consider the expression

IFLCR AU G
—1 a1 o1 — ’

on the assumption that x has & value belonging to the inters
val @ < » < 8; the function A4,(#) has almost everywhere

a derivative equal to f(2) X.(f). Let R(x) be a fupckion
equal to 1/ for |uj =4, and so defined for |u!- s A% to
have a continnous derivative everywhere. '_l‘hemj{forhiaﬂf x
in (e, 8), B(x—1t) is the same as 1/(c—#) e}t&lll points of
the interval —1 < £ <1 where f(¢) is diffehent from zero,
and the integral above is equal to P \d

S

- 40 e —fae.

The product Ax{f), & (Grradt; hlaﬁsﬁl_ﬁig;;neverywh ere a derivative
with regard to ¢, equal to A B(z—1) — 4. () B (z—1)
and its increment over an“interval is equal to the integral
of this derivative, sowt@at

”’fl'a;;(é) Rz—t)

= [4@) B@@— O], -l-J: An(t) B (z— 1) di.
7o \
Both %@”and R'(u) are continuous for all real values of #,
3Il‘d.,~€pproach Zero as u becomes infinite in either direction.
Let*M, be the maximum of |R(x)|, and M, the maximum of
\\3 L}Ef(u)l; these numbers are of course independent of x. In
the right-hand member of the last equality, As,(—1) = 0,
|An(1}1 = &y, |R(a'.'—-1)| < M,, while |A-ﬂ(i}| < ény

IB@— 0| < M;, over the whole interyal of integration.
Consequently

7

1
‘Jq_lA;; (&) Rix — Ddt| < Myen+2M, €.

Since limy,— o #l2 &n = 0,
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nl? ' B X (—t)-di

-1 x—1t

approaches zero uniformly for « < & < B. The same con-
clusion holds if X, () is replaced by Xa4: (f). On the other
hand, 72 Xp.1 (2) and n2 X, (¢) are uniformly bounded over
(e, #). Hence, on assembling the constituent parts of the
integral expression for S, (), it is seen that S, (x) approaches
zero uniformly over the interval in question:

~

N

Tueorem XL IF f(@) is summable together with ils squarel )

over the interval (—1, 1), and identically zero over an intervad
w—n <z < B4q contained in (—1, 1), and a_'fS\'(.I’c}‘ is
the partial sum of the Legendre series for SFG, tk\en 8 (z)
converges uniformly toward 0 for e S @ < B\

With the corollary of Theorem XI in ChapteryI, this yields
at once the forther O -

CoroLLARY. If f(x) is summable togeigx?n%aitk its square over
the interval (—1, 1), and continuous, ovér the interval o—1
<z < B+, with o modulusdgfaomiinwiiyrg ) such that
limy_, ©(8)log 6 = O, the Legentre sevies for Flx) converges
uniformly to the value f@afor ¢ < x < B.

_ QO
7. Degree of convefgence of Legendre series under
hypotheses, involving limited variation

1t remains tdneonsider gquestions of degree of convergence.
The discussiorwill be based on the properties of the Legendre
POlynomﬁtfaHeady used, together with the identity

AV e = En—z_—i[x:,ﬂ @) — X (D).

NLet F(2) be a function of limited variation for — 1<zZl
its total variation being V. Let i (z) and ¢p(x) denote its
positive and negative variations, measured from the left-hand
end of the interval, so that f(z) = fl— 1)+ o1 (@) — e (@),
@1 (—1) = gg(—1) = 0. By the second law of the mean,

_Jl P3 (53) X, (@) dx = ¢ (1) J? X {x) d

TN
N NS
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for some value of & in (—1,1). But as a consequence of
the identity in the preceding paragraph. with the observation
that XnJ,-] (1) = Xn (]) == 1}

! . . __1____ - R Y

X ()dx = 5 1[‘1”“ () — Koo ()]
J— __1 Lo i 1 h; p
— 9nd an—l (“) "X?H—l (5)] \\\

For a sufficiently close estimate of the magnitude of gtlfqz
difference in the last hracket, there is occasion to gooijﬁ}ick
~ to the identity

. O
Xola) = -;I;-J:[.-;»qt?'(]—g;f)l-'z cos g1 447

If this formula isused to express the difference Xoi—1(2) — Xn4a(7)
by means of a single integral, the int.egl‘él}ld is
O
W
[+ a1 — 272 cos g]2= {1 — [2E7(1 — 42 cos ¢]2}
= [wti(l—a?)1? %0“%@3’é’ﬁ(}u—lfgﬂ;ﬁfg@gﬁé{fﬁ”g(1 +cos?p)—2izcose].

For = in {(—1,1), the abs'tihiie value of the last bracket
can not exceed 4, and hénce

1

|X"_1(x)‘Xﬂ+l(33)i 5%(31—x3J‘-’2£ ‘il ~ ) eose P ldy.

On repeating,‘.'{ﬁ;h’ slight changes of notation, the reasoning
which 1:311x o, dnequalities for the Legendre polynomials in
Chapter Injt'is found that

OO 2 ,
ffs;}%(l—x"’)”%osgo g = QJ:" [22+(1—xD eos?p] 22 dy,
'\

\d _ {1~ 2% cog? g < 0"

o~
Y
4

fo__r the values of the \?ariahles that come into consideration,
itz = 2/n) (1—a)2 ang

2
o 2 =
fv. R ALF P .
: SCEIFN

T o T ) j‘m o
2tz —1) 0 =297 ), ‘ '
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With the observation that #—1 2 3n for # == 2, the pre-
ceding inequplities may be .summarized by saying that there
ig an absolute constant ¢ such that

PANEES ANCTE-ST
for n=>1 and for —1 X2 < 1; it is clear that the case
n=1 can be included in the final statement. (Strietly
speaking, of course, the result is obtained directly for |z <1,

and extended to the ends of the interval by continuity,) ()

The essential point is that there is no factor (1 —a2(n
the denominator en the right, as there was in the gorres-
ponding inequality for a single Legendre polynoiial; “its
absence is due to the factor (1—a«®)"* whick coines out before
the integral sign in the expression for the diﬁ{arehce.

Applied to the problem in hand, the inequa]‘iﬁf just obtained
shows that NN

. RO IS AT ¢,
U:‘“(x) A“(x)dxl S Tutiin® = Top

wwwr gl i“aulibl'ary.org.in

Similarly, the magnitude of the integral formed with o, (z) -

in place of g, (x) does 110;. exteed cg; (1)/{2n¥%), while for
# =1 the integral qorrgsgﬁnding to the constant F(—1) is
zero. Consequently, &8 pi(1)+¢a(1) =71,

10 . eV
5o x@as] = e

The analogues ?}f Theorem III is o
THEOREMXAV. If f(z) is of limited variation for —1 £

=1, i'?&\'t}tal vartation being V, and if an is the coefficient

of Xn\(m) in its Legendre series, then, for n>>0,

V RV

lan] < n2 !

where Ry 1s-an absolute constant, so that

_ B,V
00 K@) S L

Jor — 14y S x < 1—7, the constant E, depending only
om g, : . '
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Now let it be assumed that f(x) has a first derivative with
limited variation, and let the total variation of f () for
—1< 2 =<1 be denoted by V. (In more general terms, it
would be sufficient that fi{z) be the integral of a function
of limited variation, and not necessarily provided with a unique
derivative at every point.) For the moment, let

Yulz) = fl X.(Hdt. N
By integration by parts, zw?,.“;:
1 1 W
Lf @) Xu(@) do = f_lf(x) Vi) da QD

= /@) V@, — | Q) V@) dz.

In the last member, ¥,(—1) = 0, and i = 1, Fa(l) =0
also. TFurthermore, by the identity, ‘alteady employed,

. 1 % ‘s,.
Eale) = o——— [ X (r) — Xt (@)];
- _(:f\):ww_d I?r@u‘]‘fﬂlag‘%io’rg(ljf\) Xt @)

“~

the terms coming from the ower limit of integration eancel
each other, sinee X1 (—¢1) == X,1(—1) == (—1)*+'. Hence,
with the assumption that » > 1,

¢ LN\ -

J" S S C .
__1f{:r:) Xoulz) dmz %-F—IJ: @) [ X (@) — A1) d-

O\
It the integral on the right is taken as the difference of two
integraly; Theorem XIV, or, more directly, the inequality
immediately preceding the statement of that theorem, can be
applied to each. It is to be noted once more that 1/(n—1)
..\r_iwi\,.zm form>1. The resulting gexeral formulation, however,
\, i.loes 'n:ot hold for » = 1, as may be seen by taking flz) = G,
In which case V=0, while @ may be arbitrarily large; the
conclusion is essentially restricted to values of % > 2. In-
duction based on repetition of the process of integ_ration by

parts leads to a conclusion which may be stated as

CoROLLARY L. Iff () has @ pth derivative of limited variation,

P20, and if V is the total varigtion of fP () for —1<x <L
then, for n>>p, : -
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R,V
| =~ pram

where Rp depends only on p, and

i 'RP’?V
tan X (@) S —

"for —1+9q < o <1 -—q, where By, depends onp tmd on 1,
but not on x or on n. S

Suppose fi(z) is of limited variation for —1 <z < 1, with(®),
total variation V, and identically zero for ¢ —q S < 8-pg»

Let B(x), as before, be equal to 1/ for |u| = 4, and défined
in some way for |u|<(y so as to have a cbntiuuous’dpﬁvative
everywhere, If M, is the maximum of [B'(Qp\the total
variation of R(«) over any interval of length,Z does not
exeeced 2M;. The quotient f{f)/{z— 8 As\identical with
S R(z—1), if x has any value bel@gﬁn’g to the inferval
‘a < g < B, Ttis of limited variation; regarded as a function
of ¢, and its total variation has an\upper bound which may
be expressed as the produc‘ﬁ"fff"fmiﬁj‘ﬁﬁfﬁﬁf’faii‘fbending only
on 7, and, in particular, indepeéndent of z. So Theorem XIV
may be applied to the funetion f() R(z—1), and the result

substituted in the integral expression for S, (x), to prove
CoroLLARY IL. If F() is of timited varintion for —1 <2 <1,
with total variation V, and identically zero throughout an
interval a—-—qé:'c"g A9 contained in (—1, 1), and if
8o (@) is the)partial sum of its Legendre series, them, jfor
nz1 dtﬁgng&:
R o

) [ Sl <

n *

r

2
\w}%é?”é Oy depends only on 1. .

Further consequences can be deduced substantislly as b
the case of Fourier series. If f(x) has a bounded derivative
for —1 <2< 1, it comes under the hypothesis of the
Corollary of Theorem XTI in Chapter I, and its Legendre series
converges to the value f(x) for —1<<z<1. If the series
converges uniformly for —1 < z < 1, its sum agrees in value
with f(x) at the ends of the interval also, by continuity.
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So Coroliary I above yields information as to the order of
magnitude of the error, under the hypotheses indicated. A result
may be stated for the entire interval (— 1, 1), as well as for

an interior interval, sinee |a, X, (0} | < @, | for —1 <2 < 1;.

Tueorem XV. If f(x) has a pth dervivative with lGimited
varigtion, p = 1, if V is the lotal variation of fP(z) for

—1=Z2 <1, and ¢f Sy () is the partial sum of the Legendre )

series for flx), then, for n = p,

If(x) _ 'r“ (ﬂ'.') | g _’HQ;U LS :Z “': \

P—LD N\

SJor —1U'<z< 1, where @ depends only on p, and'\“:’g
R7s)

. Qpr V \ N

FO—8@ S T O

for —15q £ 3.Z 1y, where Qp, depends oyl on p and on 7.

In conclusion, the following consequefcts of Corollary II,

taken first with the corollary of Thbgrem XI in Chapter [

and then with the Theorem XV just formulated, may be
stated without“RiFHE hiaRSTs

TueoreM XVIa. If f(2).ws continwous with modidus of

continuity ©(0) throughowh, an inferval a—n <z < B-+7

contained in (—1, 1),“%}9?'& @($) >0 for 60, and o

limited variation ovef\the rest of the interval (—1, 1), then

' Ef(w)—ls'u ()] g co(2/n) log »

Jor & < x <CBif m s large enough so that (2 /) has o meaning,
S () b«(@r the partial sum of the Legendre series for f(@)
and’a};{c\cmstant depending weither on 2 nor on n.
(TAEOREM XVIb,  If f(x) is of limited variation for —1

\‘:;_ « <1, and has o first derivative of limited variation
throughout an inferval «—y < z < 87 contained in
(—1, 1), then o

SA—%@ <=
Jor « = x < 8, where 8, (z) s the partial sum of the Legendre

serigs for f @), and ¢ isq constant depending neither on x novr
on n.



CHAPTER III

THE PRINCIPLE OF LEAST SQUARES
AND ITS GENERALIZATIONS

.\\'\

1. Convergence of trigonometric approximation as\.))

related to integral of square of error )
In the discussion of Fourier series hitherto, scar;oély",any
mention has been made of one of their most rems Hable and
important properties, namely their relation te\problem of
least squares. The property in question is\Jiot peculiar to
Fourier series, but is of mueh wider signiﬁc nee.
Let py(@), i (2), po(z), --+, be a ge\\qﬁenc-e of mormalized
orthogoenal funetions over an interval (a/%), that is, a sequence
of functions satisfying thewaoﬂ&i‘piuiisbrary.org.in

JQ:PJ @ pel@)dz = 0 (j‘::ll“k), Jab {pe ()2 de = 1.
LN\ #

Let f(x) be another f’un(?t}oa defined over the same interval.
The functions px (x)'*a‘n\d" f(x) may be continuous, or, more
generally, bounde@band integrable in the sense of Riemann,
or merely summable together with their squares. The problem
‘of least square¥ in question js that of determining a set of

coefﬁciemkg:‘jc;’, ..., ¢4, for a given value of », so that when
L\
‘f.’;\ ¢ @) == copo (@) Fap @+ o+ Culn (@)
<h§.31ftegral
3 L]
g [ 1 — s @z,

regarded as a function of its coefficients, ghall be a minimum.
The following theorem is well known: -

TuroreM 1. The nfegral has o minimum value, for the
attainment of which i is mecessary and sufficient that

b .
o ;J;f(ﬂf)}jk(x) dx, ko= 0; 1: sy M
7
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It is fo be noticed at the outset that mno funciion of the
form ¢(z) can vanish identically over the interval urless all
the eoefficients ¢z are zero; in oiher words, the conditions
on the p’s imsure that they are linearly independent. For

Jls@lae = g+t +a,

and the identical vanishing of ¢ would require the vanishing\\
of the sum of the squares. More definitely, it is recognized
that the value of the integral on the leff must be pﬁsmve,
if the ¢'s are not all zero. If the p's are contmnous, this
means that there must be one or more intervals(throughout
which ¢ remains different from zero; if tiey are not so
restricted, it means in any case that mystbe different from
zero over a set of positive measure. °( .

To prove the necessity of the cm}dmon suppase that ¢ (x)

is a fanction of the form X e pr (w)‘f in which, for a particular
ndex k —

~

Warr. dbraulibgary ol'g in

tm F .ff(:c}pm (@) dz.
Let

Wiz} = copo(@} -+, p*@l+ e ) pm@ A o+ apaled
= ¢lx)+ hpmtx)r

where k is a{constant, the value of which will be specified
presentiy Z\Bhen f{z) — 9w (@) = f(2) — 9 (2) — hpm (&), and

TU(m> valas = [ (/) — ¢ @iz
A “‘2”*[ Lf (@) — 9 ()] pm (@) dor - B2 I [pm @)]*d2.

~ The last integral in this equation is equal to 1; if the others
are denoted by J, R, § respectively,

J= R-—2Lr81- K%
But f P (T pm (D) dz = tm, and

b= .J,, /@) — ¢ @) pm () dz xﬁf(x)Pm(w)dx_"’m 0



III. PRINCIPLE OF LEAST SQUARES 1%
by hypothesis. Let % be taken equal to &) then
J=R—S8'<R,

and the value B corresponding to the function  is not the
smallest value of the integral, since the fumction 3 gives

a smaller value.
To show that the condition is sufficient, suppose now that

¢ = >op With ¢ ﬂﬁf(x) pdydefork=0,1,.-., n,
and let .
W) = agp@tan@+ .+, \\

where at least one ¢f is different from the correspending «x.
Then ¢ (x) — () is a linear combination of po, N} pe, With
coefficients which are mot all zero, and N\

b .\\
szhﬂ@—wmr&y

On the other hand, WEW. dbt@ﬁllbralyorg in

J Sx)pr(x)de = c,m‘—fbc,o(x) prlx) de,

J [f(:c)——go(x)]‘pgxx)d:c——o k=01,

so that if y(z) = Z‘\i pk(a':) js any linear combination of
Doy <+ <y By

,thvw—ﬂﬂﬂﬂw

N éag{]cg!ﬁb[f@) — ¢ (@)] px(z) dz = 0.
Fﬂ .Nﬁ;cu]ar,
\é ) U= J:J [f(z) — (@) [p@) — ¢ @)] dz = 0.
Hence, by the resolution f— ¥ = (f — )+ {y — ),
J: (o) —p @) dx = f (fl@)—g@Pdr-t2U-+F

??J:[ftx)—'@(r)]'d—r,
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which means that ¢ actually gives the integral a smaller

value than any other linear combination of py. .-, pu.
As the most important of specific cases, py, gy, pa, + -+ may
be the sequence of functions
1 cosx  sinx cos 2 sin 2o
(2 jrr)1,-'2 Togtizr gl Sl 2 I L

~
"\
If # above is replaced by n' = 20+ 1, ¢{(x) iz a trig0110n1§t{'jt'\
sum T,{x) of the nth order. A periodic function f(x},fmfng
given, the condition that the integral D

L 3
S
Tt

A\
e[:: [fz) = D)) dur ’\s\
shull be a minimum, is that the coefficient 5F cos ka/ i be

D
" rin Sk
. " e\
for =0, W%%.‘Eﬁﬂr&ﬁﬁ%’}qpﬂp é’q‘gt‘g{'mination of the eonstant
term and the sine terms, apd this is equivalent to saying
that Th(z) shall be tha}pm:tial sum of the Fourier series
for fix). 2N\

This property qf.ﬂ?}ast squares may be taken as a point of
departure for a%(lis\é'ilssion of the convergenee of the series
under suitable\hypotheses with regard to f'(a:). While the
hypotheseg {@ve more restrictive than those nsed in the con-
vergence \proofs already given, the methed is of interest for
its osn*take, and furthermore lends itself to a remarkable
vamigty of generalizations in other directions. Tt depends on

_Jtheorems of approximation from Chapters I and II, and also
\ ) ou a proposition, due in the first instance to S. Bernstein,
\/ the simplicity and importance of which are noteworthy in

the highest degree:

BERNSTEIN'S THEOREM.  If Ta(2) i @ trigonometric sum of
the nth order, and if L is the mazimum of its absolule value,
the ahsolute value of the derivative T4(x) can not excoed nL.

The proof to be given here was devised independently by
Marcel Riesz and by de la Vallée Poussin. For the purposes
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of the demonstration, the theorem may be restated in the
following equivalent form:

If Ta(x) i a trigonomelric sum of the mth order, and if
the mazimum of | Tn(x)| is 1, the mazimum of | Ta(x)| dlself
can not be less than 1/m.

Suppose the maximum of |Ts(z}| were less than l/n.
Then, for any value of the constant €, the function

Ru(a) == %cos (nz— ) — Tn ()

points C/n, (C+m)/n, (C+2n)/n, .., (C/n)+2n, are
cos (nz—C) takes on the values +1 and —1 altefiia ely,
Hence R.(x) would vanish at least once in each\ of the
9 intervals between successive points of thig\set, say at
the points ay, . -« -, %2a, all contained ln\}n interval of
length 27, By Reolle’s theorem, Ra(z) ‘u(prqldzifnnish between
x, and zy, between xy and x5, ete., and :a}s’o, as Hp(x4-2m)
= Ro(z) = 0, between aoﬁ;p/andhr@gkl‘ﬂn‘argmﬁghm‘zn distinct
roots of R thus specified all Jiey within the interval from
# to 2+2n. Explicitly, N

Ri(x) = =fsin{nz—C)— Tals).
XA .

If ¢ is chosen sg %" to make sin (nz— C) equal to the
negative of T (x)./ab a point where Tn(z) = + 1, R (x) will
have a double®bet at this point; for each of the functions
sin (na — €)f Fn{x) separately attains a maximum or & minimum
there. j{iw?lng 94 distinet roots in a period, and at least
one d¢uble root, R, has roots of aggregate multiplicity at
leastZ7n--1. But this would require that L, as a trigonometric
ﬁhﬁﬁ:ﬂf order », vanish identically, which is impossible, since

¢ is sometimes positive and sometimes negative, by hypothesis,

and so ean not be constant, Consequently the assumption

that | T, (x)| remains less than 1/n is inadmissible.

(The fact that a trigonometric sum of order n can not
have roots of multiplicities aggregating more than 22 without
vanishing identically is assumed here as konown. A special

]

~

N

would have the same sign as cos(nz—C) at each of the
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case of it, sufficient for the present application, is proved
incidentally in another conmection in Chapter IV below.)

Te proceed with the proof of econvergence, let i) be
a continuons function of pertod 2m, and S,(x) the partial
sum of its Fourier series to terms of order =, and let

Li
=] L@ — S da.
R 3 o ’\
\
Let #.(x) be a trigonometric sum of the nth ordery (sub-
sequently to be chosen so as to furnish an approgqnataon

to f(x), but arbitrary for the present, and let A\
_ K70 N
f(’w")_fﬂ(m) == ?’(93), Sn (3')_tn(x)..?’fu (33)
$

Then +—=z, is identical with j—bn, aqd

Jm [r(?)_fn{ﬂ")}‘wi == Ya
Tet &, be an upper: H&ﬁﬁﬂlﬂi’ﬁi“%lﬁ BdBsolute value of »(x):

(o)t =N (aLwr,)—-—t,,1 ()] =
Q
for all values of x\ Finally, let g, be the maximum of
|7 ()], and xm\pomt where |7, (%o} | = pn.
By Bemstem’s theorem,

-~ |2 (8] < npen
.\, )

tor’\\aﬂs values of #. For |z—a0| < 1/{2n), consequently,

“::’;\ | - . 1 ! | 1

AN T () 1n(3»’0)| = 5k, | Zal®) | = — tne

o»\’ W 2 = 2

\/ If &, < 1pspy {the contrary case being reserved for separate
mentmn),

@) < = '“’ﬂr |7 () — 2a () | = én“’n,

throughout the interval specificd. As the length of the
inferval is 1/n,
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whence pn < 4(nyn)¥.  To suppose, on the other hand, that
5> Ly, is to assume outright that ws <4&. So in either
case pn does not exceed the larger of the quantities 4en,
4{nypy, or, in a single formula,

P = 4(n ?’n)m + 4y, o \\'\
But |tn] < e, [#| < €a, and r—1, is the same as f-:;’és‘n,::
Consequently O

F)— (@) < Alnraptbbes N

for all values of w. \’\
The function f(x) being continuous, it is dlways possible
to choose £:(x) for successive values of #\in such a way

that lim,—wen = 0. So the relation jlié} obtained amounts

to a proof of \\\\\
Tueorem IL  If fl=) is g \ﬁo&éﬁﬁfi’ﬁ lybpgfggﬁanof period 27,

its Fourier series will converge gmiformly to the value f(x),
provided that N

lim “#yp == 0.

R=E0N

In partienlar, ’J.‘l}eoﬁéﬁ VI of Chapter IT yields at onee

CoroLLaRY 1. Aé@‘ﬁcient condition for uniform convergence
is that f(x) be_.a'ﬁgviutely continitous. '

By Theorcin®f of Chapter I, on the other hand, if w(d)
is the modulis of continuity of f{z), there will exist sums
ta() ghich/that
O .

R\ f@)— 1t (@) < K'w 27/m),

\\\}h‘ére K' is an absolute comstant. Then

Ji;[}"(x)—tn(x)]ﬂdm = QE[X’:.; (27/n)]%

But as the integral takes on its minimum value when Sy ()
is put in place of #,(x), the right-hand member of the last
relation is an upper bound for y,. So my, will approach
zero if 1% w (2 =/ n) approaches zero, and it is possible to state

it
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CoroLLarY I1. A sufficient condition for uniform convergence
is that limg.. @ (8)/8Y2 = 0, where w(0) is the modulus of
continuily of flx).

The conditions of Corollaries I and II of course overlap
to a considerable extent, but they are not coextensive, and
neither includes the other. As previously mentioned, they
are less general than others which have already been obtained; N
absolute continuity is more stringent than limited variationy\
and the requirement involving 6% iy more restrictive $han”
the Lipschitz-Dini eondition. O

The novel possibilities of the present method wilkbe more
apparent, if it is remarked that in the proof of/Pheorem II,
down through the final relation of inequalitypreceding the
statement of the theorem, no nse whateveriwas made of the
assumption that &, (x} was the Fourier.ﬁrfn for flx}, and
the value of the integral y, a minimumy the argument can
be repeated step by step with S, (£))replaced by 7 {z), an
arbitrary trigonOmﬁtmbﬂamjbfat&g&nﬁhwrder} and y,. replaced
by gn, the integral of | f(x ——T,i {(x)]® over a period. The
conclusion is N\

TuroRrem ITa, If f LW @ continuous function of period

27, Tn(z) an {t-ﬂ”bity‘{ﬁ-‘: trigonometric sum of the nth order,
ond x\"

x\”g.;s.:fr [fle) — T @) d 2,
and if’ thered exists a trigonometric sum 1, (), of the nth order,
such t«k}st“
R\

f) — ta )] = e
A

\fﬂ‘?" all values of x, ﬂzm} Jor all values Of x,
Lf@) — Tu @] < 4Gega®+ 5y

To this may be added immediately

Tueorem IIh.  IF sume To(@) are defined for infinitely
many values of n in such way that gy << Ayn, where 4 18
mdependent of n, the sums T (2) il c:oa;erge uniformly to
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the value f(x), as m becomes infinite, under the conditions of
Theovem 11 or elther of ifs corollaries. .

The next application depends for its simplest expression on
an existence theorem, the proof of which will be postponed
for a few pages, to avoid interruption of the cwrrent order

_of ideas. The statement of the theorem is as fellows:

Tuecrem 111, If o(x) is a summable function of period 2n
which is mowhere negative, and is different from zere over
a point set of positive measure +n a period, if f(x) is a sup,
mable funition of period 2m such that ¢(x)Lf(x)F z'gméls}}’
summable, and of Tp(x) is o lrigonometric sum of ‘ggiécij"ied
order n, the integral :.\'\'“

PAL

[[e@ i@~ ta@Piz O

has a wmingmemn,; which s aftained for oy‘aé\bﬂ:djust one deter-
mination of the coefficients in Ty (@)ag~>
The truth of this assertion being @3stimed for the moment,
attention will he directed tethedimestibmnf d¢heinonvergence
of T (x) toward flz) as n bgtjghiés infinite, the function fix)
being supposed continuous.~3Fhe problem is comnected with
an extensive theory developed from a different point of view
by Stekloff, Szego, an@'}thers, The minimizing sum may be
called the app-roa:z'#uﬁiﬁg sum of order n covresponding to the
weight function, @), and it will be understood mow that
Talx) denotesthid particular sum. The eorresponding minimum
value of thg\integral will be denoted by 6. For the con-
Vergenpe\:p}dof, let ¢(x) be further restricted by the hypo-
thesis‘that its values are comprised between two positive
bOlmaé
Q”
where v and ¥V are independent of .
By the minimizing property of T, (x),

G = J:rg(;r:) [F(x) — Twix)]?da
<[ @ rw) — 8@z £ Vi

O0<o < ple) £ T,
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where S, (z) and y, have their previous meanings. On the
other hand, with the notation of Theorem Ila,

i d
(in > UJ_’_ [Floy— T (@)Pdx = vy,

So g. < (Viv)yn, and the conclusions of Theorem IIb are
applicable: ’

TrEOREM IV. If the weight function ¢(x) has a finite upper o
bound and a positive lower bound, the approximating sum TeZ)N
will converge uniformly toward f(x) as n becomes inﬁq;ﬂéyjf
iy nyn =0, and hence, in particular, if f(x) is absolutely
continuous, or has a modwlus of continuity m@}(’s:&ck that
Hmy_, w(8)/%2 = 0, 4

In modification of this result, let the resttietion |e()i <V -
be removed, the hypothesis with regard\to'¢ being merely

that it is summable, and that ¢ = v > Q ‘everywhere. Since G»
is a minimum, . AN :

St @ e

it ta () is any trigonomet;ji;t;silm of the nth order. Let &
be an upper bound of |/~ 4|, as before. - Then

QO
0% [ ewrie = 14,

with the notation |'e — 7. As it is still true that Gy == vgn,
it follows thet ¢, < (I/v)e. Under the hypothesis that
limg_, e{B)/8Y2 — 0, £,(x) can be chosen so that limp=co 2"/*£x
=0 (which means that limy—ee 7 ¢, = 0, and Theorem Ifa
S!lgw\ﬁ that T, (.’I}) Converges uﬁn@;fl'ormly o f(.’x;) once more.

$

\:) Convergence of trigonometric approximation 8s
related to integral of mth power of error
- To generalize in another direction, consider the integral

- [0 —nem,

in whit'.h m is an arbitrary positive number, taking the place
of the particular exponent m = 2‘that has been used hitherto.
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‘When m, n, o(x), and f(x) are given, f(x) being bounded
and measurable, it can be shown that there exists a deter-
mination of the coefficients in T (z) for which the value of
the_integral is a minimum, provided that ¢(z) is summable,
everywhere positive or zero, and different from zero over
a point.set of positive measure in a period. When m>1,
the determination is unigue. The existing presentations do
not give the theorem with quite this degree of generality, \\“
but it is not difficult to supply the necessary extensions. For,
somewhat less general functions ¢ (in particular, for the case™
that ¢ = 1 identically} it has been shown that thq‘;’d‘etér-
mination is unique for m = 1 also, if fla) is coftinuous,
It is not generally unique when m < 1. The proofs will be
omitted here, the facts with regard to convergence being
formulated in such a way as not to presuppese a knowledge
of the theorems of existence and unigueness.

For the disenssion of convergence, Yeb-f () be a continnous
funetion of period 2 7, and let it be supposed that there is
a number v such that \a\rwwfl:br;éuli.bl'ary.org.in

¢S v>0
for all values of x, Whﬂé\e (x), as always, is summable over
a period. Let ¢{v .
= 0@ @ Tu@) P de,
PNE :

T (?)-beigg‘%i‘ the present an arbitrary trigonometric sum
of the nfb/order. (The notation is changed somewhat from
that: p‘g@riously used in treating the case m — 2.) Let it be
) agsimned that there is a sum 5 (z), likewise of the nth order,
\ét;c]i that . '
| f @) —ta @)] £ &
for all values of x, and let : '
@) — @) = r@, Tal@)—t@ = @),
whenee : '

fre(w)lr(w)—'—r,(w) P dz = gn.



98 THE THEORY OF AFPROXIMATION

It gn = [ () | is the maximum of |7, (), it follows that
|7 ()| < npn, by Bernstein's theorem once more, and there
is an interval of length at least 1/n throughout which

| ¥n (T) — T (xn) t = g fn, Ty (5*") =

Fin g

o] -

. 1
@)= @] = o s

provided that & < }x,. Then ‘.\\

N DT S ...." e
n = PREYE pn = 4 (ngalv)ie, 9

Whether ¢, < 1 4, or not, N

tin = 4 (Rgn /o) 44 £y \
and ’

NS
fla) =T, ()| = ) —w, () | '3\4 {(nga S D gy

For each value of 1, let 1, bg?\\‘m:e greatest lower bound
of the integral g,, when all passible values are given to the
coefficients in T lrs RN P"Killhtions ¢ and £ and the
exponent » are held fas‘g.xf'l’t‘ is clear that y, = 0. Nothing
is assumed as to the possivility of making g, actually equal
to 7x, by one or xnm}e determinations of the coefficients.
As g, can not he\'{es’s than y, for any sum of the nth order,
it follows in Particular, sinee #, (x) is sneh a sum, that

A\ X . .
A= e )~ ta @ man < 10,

A&
the ¥able of [ being denoted by 7. It sums T, (z) are
cjg?sen for the successive values of » so that gn = Ayn, Where

'\:«‘{L Is independent of n, then glim < (4 )tmg,  and

’
. Nt

\3
4

;f(x)_'Tn (33)| = B‘nnmé}“

where B is likewise independent of n. The sums T () will
converge uniformly toward S(x), it n¥me, can be made to
approack zero, and this will be possible under conditions
ndicated by Theorem I of Chapter I, if m>>1; by the
Corollary of Theorem 1V of that chapter, if m — 1, and by
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Theorem IV itself, it 0 < <1, The principal results may
be summarized in the following formal statement:

TuuoreM V. If the weight function ¢{x) is summable and
has a positive Tower bound, and if a sum Ty () of the nth
order is chosen for each of an infinite set of values of n so
that gn < Ay, where A is independent of n, these sums will
converge uniformly toward Flx), when m s held fast and n is
allowed to become infinite, {f m>1 and flx) has o modulus’ \\
of contuem@ @{) such that limg_,w(6)/d*™ = 0, or j"x
m=1 and f(x) has a continuous derivative. :

The explicit statement for m <1 is more comphq&ted and
less interesting. - In the cases covered by thc'ttre\srem as
stated, for m > 1, there is in fact a determinate approximating
sum for each valoe of #, making g, = r», and\3he conclusions
of course apply in particular te the con}ergence of these
approximating sums. On the other h‘and it is clear that A
can be replaced by a factor A, which bécomes infinite with #,
if more restrictive hwpotheses ard'%fglaﬁgg 0L bf {x), so that &
tan be made to approach ge’m with 8 melﬁiy increased
rapidity. 3

3. Proof of\hn existence theorem

To carry out an” ﬁltentmn expressed above, it remains to
supply a proof 4 Theorem III, with regard to the existence
of an approfimating sum corresponding to a given weight
functlon Q(iﬂ”when m=2.

il{_be worth while to begin with more general con-
“’ldelﬁﬁbns Let (%), ¢.(®), @), «-+, be a sequence of
f:llqetmus each summable together with its sguare over an
<‘_‘P‘te""ﬂl (2, b). Let these functions be linearly independent,
in the sense that any linear combination of a finite number -
of them, with eoefficients not all zero, is different from zero
over a point set of positive measure in (a, b), which is equivalent
to saying that the integral of the square of such a linear
combination, extended from ¢ to &, is positive. The requirement
may be indicated briefly by saying that the ¢'s are properly
independent. Let
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f

Go

qu_, @ o r
0 —0 J'.Q’sQo fgz G ,

= s ()
f “% f “ O
and generally K
k—I quJ : i‘.}
%= qg— 2 Q- ;
=7 fe O
~N\

it is understeod that each integration igto be performed
with regard to x, from o to b, Each d{nﬁmmator ig different,
from zero, becanse of the hypothqg,ls of proper-independence.
It is seen from the definition of Q1 ‘that IQO @, = 0. Since this

is the case, the definitinn. Qj&é@&ﬁ%j Qo Qs — f Q Q. = 0.

(fenerally, each @ is orthog;(mal to all the preceding @'s, or,

in other words, any tw’n \0f the @'s are orthogonal to each
other, If A

& Pk (@) = Qa/ (ka)

the functiong pk form a normalized orthegonal seguence, to
which Thef)rem I is applicable, Each py. is a linear combina-
tion of Et. -, gk, and comversely each ¢, can be linearly
exprbssed in terms of px and the p's of lower order, since
tlt& coetficient of gr in the expression for pp is not zero.

) "Now let e(x) be a non-negative summable function of

"
\ N/
\ 3
4

period 22, such that
J:tg (@) dx >0,
and let {¢(2)]? = w(x). The functions
w(w), wlxycosz, wx)sinz, wiz)eos2x, wix)sinle, -

are summable, with their squares, and properly independent;
a linear combination of a finite number of them, with co-
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efficients not all zéro, is a trigonometric sum multiplied by
w(w), and is different from zero wherever ¢ 0, with the
exception of a finite number of points at most in a period.
I they are taken as the functions g, g1, ge, --+, of the
preceding paragraph, over the interval (—n, =), the corre-
sponding functions po, p1, e, ---, have the form

w(@ Uple), w) U@, w@ Vi@, w) U, (@), N
wlz) Vela), -+, (\)

. o

where U and Vi are trigonometric sums of the ch {irder,
and - D

\Y
f e{x) Uslx) U:;(:c) dx ———-IK ¢(2) Vix) V@A =0 (5 + 5,
\)
Jﬂ e(@) Uj(z) Vilx) d:b‘ = 0‘\ for all j and %,

[ e @iz = [Le e(a") a@lt az = 1.
W\\!W’,db‘l‘aullb]“al y.org.in

It Tw{z) is any mgonometrlc sum of the nth order, w(z) Tal(z)
is a Iinear combination/®f the functions now taken as the ¢s,
and so is a linear con}bmatmn of the functions w(z) Uilx),
wlx) Vilx), k == 0\1 ., m, and T, itself is expressible in
terms of U, Vk,)with the same coefficients.

Let #(x) béCa summable function of period 27, such that
ef{x) [ f(:r;)]‘{ s also summable. Then

Jq” E\&) {fle) — Tu@)]* dx = I” [w (@).f (@) — wiz) T,.{'r)]’ dzx,

sa,nd Theurem T can be applied, with w(z) f(z) as the function
for which an approximation is sought. The integral has
4 minimum value, and if '

To(e) = Ao Up(@) + 4, Ui @)+ -+ 4 U {z}
+ B, V(@) + -+ Ba Vala),

Q

it is necessary and sufficient for the attainment of the minimam
that
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fe= " 0@ f@) 0@ U@ de = [ o) ) Uile) d,
Be =" o) f2) Via) .

4. Polynomial approximation
Attention will next be directed to problems of polynomial,
approximation. An essential instrument here is the form of

Bernstein's theorem in which Bernstein himself was pn'zn'irﬂy
interested: O

BerNsTEIN'S THEOREM ®OR PoryNomiars, JfPn (@) is
a polynomial of the nth degree, and L tke\*'.ﬁmximum of

| Pal@)] for —1 <ax<1, then O
, _onl N
) [Pn($)| g (Iuw\w
fl‘.'n' “1<.’E<1. \’s v

It can be deduced immediately(fy0m the theorem for the
trigonometric case. Let ¢ = c08.8. Then P,(x) = Py(cos0)
i8 a trigonomettit "SR 3 {HAT H1A & Aer in 4, having L for
the maximum of its ahsoli{ée’_value, and consequently

d ! '\
‘E-E Py(cos 6)| = |§i00 P; (cos )] == |(1 —a*)'2 Py ()| < nL,
&

whence | Pr(a)h< oL/ (1 — a2,
It L is.tk.xe.'i'naximum of 1 Py(x)! for ¢ <z < b, let
m\ _ 2z—a—>
§~.: ¥y = b a
Th{}fl Pu(x) = Qu(y) is 2 polynomial of the nth degree in ¥,

~having L for the maximum of its absolute value in the

\‘;

interval —1 <y <1, Therefore

d ; da b— n k.
& — Pl 2| _ & 5, _nk
l dy n (y)! | P () dy CREL (@) = 01—y
by substitution of the value of y in terms of z in the factors
(1), (1+y) under the radical sign, one is led to

CoroLLARY L If Pa(z) is @ polynomial of the vith degrer,
and L the mazimwm of { Pr(@)i for a < o< b, then
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nl

| Py ($)| = {(b ___x) (x— (1)]1'“2
Jor a<<z< b,

This implies directly

CoroLnany 1L JF Po(x) is a poynomial of the nth degree,
and L the maximum of |Pu(x}| for a < 2 < b, and ¢

iy b < b, then O\
, N
| Pale) = hnL
for ay < x <<y, where h depends only on a, ay, by, a'{ri\d 5
A further corollary is to be obtained by the, fo]lowmg
considerations. Lt Py(xz) onee more be a olﬁomlal of
the nth degree, and L the maximnm of jts{ %solute value
for —1 <2 << 1. let 2 be a number of the interval

—1<<z =1, and ¢ a positive numhef =1 such that

—1Z£g—d< 1. Then NG )
O " ;
t
,[ — B, _ {j' J— I Foul L — o
| P (@) — Pr(e — 8)| = | g fu‘i?;ﬂ S s T

it is readily seen that ,jn‘;

J Qt\\ - r dt
- K& i ) g e

(For an analy tlcal proof, let d =24, s—40 =y, so that
e—d=yNfe=yty,
'\

( fb @L__f“ ﬁL_
® weg U= 8 Jyy, A—877

bmct.,
ST 1 1

Ny J,, Tom= = =g toa®  [T—G—0P

which is equal to 0 it y = 0, positive if y>0, negative if
y<20, the value of the integral is a minimum when y == 0,
that is, when the interval of integration is symmetric about
the origin, and increases steadily as the interval is displaced
toward either side) As <1, 0<?¢=<1 in the integral
from 1—6 to 1, 1—#>1—¢ =0, and
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1 a1
dit dit
et U R . V-
Jl‘*a‘ (1—28ys Z.Jl_a'(l-—t)‘-’” 241

So .
' | Po(x) — Pu(x—0)| < 2n L &2,

An equivalent statement is that if x, and x, are two numbers
in (—1, 1), differing by not more than unity,

|Pales)—Palm)| < 20 L|ma—m P2 (O

Now suppose that I is the maximum of | ﬂf(«:c:)i for
¢ < 2 <b,andlet z and x, be two numbers of thi m}erva.l dif-
fermg by not more than § (b—a). Lety = (2z-X¥g—b)/(b—n),
the values of y corresponding to x; and za\being g and ys,
and let Pu(x) = Qu(y). Then L is the/Znaximum of |Q(y)!

for —1 Sy <1, 3 and g are twoihbers of this interval,
differing by not more than unity,, an

| Put) = Bu db“tﬁﬂ@’z‘i‘%‘-’- DR < 20| go—
_ 2?1}5\[24;122-——.:61 H (b — a)]vE.
The conclusion is
CoroLLARY ITI, , Jf. P (z) is a polynomial of the nik degree,
~and L the mavimum of [ Pa(@)| for a <a<b, and if
and 2y are o) m.:mbers in the interval, differing by not more
than 1(b —a)\ “then '
~C IPn(v’Cz)‘—P ()| < Hn L |2 —a 1,
where\ = 2/[3 (b—u)]2
By the introduction of an intermediate value g = § (2 + 2y
- 1t may be seen that

/ iPﬂ(a"’Z) Pﬂ($1)|< "(Eim_;s_lﬁ'|x2 11!2

without the restriction that |y~ | =< &(b-—a)
- The way has now been prepared for a discussion -of
problems -of approximation assoeiated with the integral

[ e@ /00— Py e,
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where ¢(z) and f{x) are given functions in the interval
(a, b), Pa(z) is & polynomial of the nth degree, and m is
a given exponent >0,

When m = 2, a theorem of existence and uniqueness may
be stated as follows:

Tueorem VI If e(x) is a summable function which is
nowhere negative, and is different from zero over a pomnt set
of positive measure in the interval (a, ), if f() i a summable,
Function such that ¢ (@) [F(@)] 4 also summable from a:fo;b,
and if Pa(x) i @ polynomial of specified degree m, the dnteyral

~
N
%

5 }
[eav@—reres o

has @ minimum, which is attained for onw>awd just one de-
termination of the coefficients in Pn(2),,\0

The proof is entirely analogous bté that of Theorem IIL
The fonections ¢ \Y,

_ wW\-.;.'t;l'bféulibrary,org,jn

where w(z) — [o(2)]¥?, afe®summable together with their
squares and properly jundependent over the interval (a, b).
If they are taken as.ﬁié functions gx(2) previously considered,
the corresponding $nmctions p(z) have the form tw(z) Fr(x),
where Y;(z) i$\a polynomial of the th degree, and

&7 [e@n@n@a=0  Gth

A [e@mera =1

~The polynomials Y5 (x) are called the Tchebychef polynomials

N
3
\:

Corresponding to the characteristic function ¢(x) in the inter-
val (7, b). Any polynomial P.(z), of the nth degree, can be
expressed as a linear combination of ¥o, Y1, -+ ¥y, and
for the minimizing of the integral in the statement of the
theorem it is necessary and sufficient that the coefficient of
Y in this expression be

J:Jg(m) FAE)] Yi(x) dax.

o~
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In the case that ¢ is identically cqual to t and the interval
is that from —1 to +1, Yi(x) is efqual to (k4 )12 X (),
where X is the Legendre polynomial of the kth degree; and
the approximating polynomial £, (x) then is. the partial sum
of the Legendre series for f{x).

For an arbitrary value of w >0, theorems of existence
and unigueness can again be established in analogy with those Q
of the trigonometric ease. An approximating polynomial,
reducing the integral to 2 minimum, exists if f(z) is bu}ufded‘
and measurable, and if ¢(x) is summable, nowhere negative,
and positive over a point set of positive measm;e\\"kfi Ya, b).
The approximating polynomial is unigue when{s> 1, and,
with suitably restricted hypotheses, when m =<1 also. The
proofs will not be given here, the furthex Miscussion being
put in such a form that a knowledge of(thém is not essential.

Let f{(x) be a eontinuous function fore < x < b, and Pa(x)
an arbitrary polynomial of the wmth” degree. Let o(x) he
summable overde r@bmﬂﬂbnﬂwh&@ﬁmegative in the interval,
and let ¢ (@) > v >0 for oy KU By, where o < ag <8y < 1.
(It will be noticed, as a_departure from the conditions of
the earlier convergenceproofs, that the hypothesis ¢ = »>>0

does not necessaﬂl&h&id over the entire range of variation
of z) Let

R s ,
M~ J; ¢(@) | fx) — Palx)™ d.

?i‘urtherrgngr}: let pa(z) be a polynomial of the nth degree,

in ger@a]‘ distinet from B, (x),

KN 7@ — pa@)] < e
~Jor ¢ <2 <p, and

SO =pa@) = r@),  Pal@)—pule) = m),
50 that
']
[ e@ 1) — mu@)im az = gn.

Suppose that g, is the maximum of |, (@)] for @ < 2 = Aoy
and that z, is a point in («,, B) at which this maximum i
attained, By Corollary TIT above,
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780 () — (o) | < Hnpen: 2 — 2 |2

as long as z is in (e, &) and distant from oy by not more thap
1(8y— &), the factor H being equal to 2/[3 (8o — o5)]Y2, These
conditions will be satisfied for » = 1 throughout one or the
other (or both) of the intervals (o — 9, #0), (&, 20+ 8}, it
1 Y el ’\\\

0= 1Fvs T T

W)

_ - O
Over such an interval, then, since @ — xih? < 142 Hy),
X
. ; 1 - LT 'I:~
1Ty (.’XJ) — fty, (330)| é _2' finy |""-'l (:I,‘) 2‘}? e
It Ey g i#‘ﬂ: . 1 .’\\';
|r (o) — 78 (@)1 Z 7l
a\
A\ .
over the same range; and, as the }gngth of the inferval is
1;’(4Hg?%2), www_db]’iéirﬁbl'%‘y.org.in
BN [ Hn
gn 2 450\ 4
fin < 4(4H!'/Q{{h {ni'gﬂ)l,"m : Bo(ﬂxgn}ll"m’

¢ L\
with B, = 4(4 H¥)¥». Whether & < Lpn or not,

2 un < Be@Pga)™ - 4en,

S @) B = lr@) — m @] £ Bog2)'"+ 5,

O
throughdit (s, £).
Tiet ¥, be the greatest lower bound of gu, When ¢(z), f(z),
~dud m are given. As an immediate consequence of the
N efinition,

i) . - - . b
< [ e@ 0 —p@imds < 1 1= [" o6 aa,

If polynomials P, (z) are chosen for an fnfmite suceession of
values of n 0 that gn < Ara, Where 4 15 independent of
then g};-"m < (ATym £ and

fla)— Pa(@)| £ B e,

=1
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for @y < x £ By, with a factor B which is likewise inde-
pendent of =,

The conditions to be imposed on f{x), in order that it may
be possible to make n*™ g, approach zero, are to be obtained
from Theorems VI and VIII of Chapter I, and the Corellary
of the latter. It will be sufficient to state the results form-
ally for m => 2, though corresponding statements could readily. C
be added for 0 <Zm < 2: A N

TrrorReEM VII. If o{x) is summable over (a, b}, an@n,'f‘s’mf’
o positive lower bound for ay < x < By, where a = o o
< b, and if a polynominl P, (x) is chosen for eabh of an
infinite set of values of n so that ga << Ay, -wkgs‘\éi} is inde-
pendent of n, these polynomials will converge wndformly toward
S@) for eo <2< By, when m is held fashand n s allowed
to become infinite, if m>2 and f(x) hasta medidus of con-
tinuity ©(8) such that limy_, w{8)/6%M 3~ 0, or if m = 2
und f(z) has a continuous deriva;a‘;;ér

Under the conditichsrfoltnnlafoekzihere will in fact be one
and just ome polynomial of each degree n for which g, = 7a,
not merely for m — 2, in_aceordance with Theorem VI, but
also for an arbitrary m(>2, under a theorem cited above
without proof. Theorem VI naturally applies to the con-
vergence of these>approximating polynomials. More particular-
ly still, for 9(%"): 1, a = —1, b = 1, one may state

CoroLLARY 1. If f(2) has a confinuous derivative for
—1 é“%';gg » its Legendre series converges uniformly toward
Sl {prngk(mt the closed interval.

Angther part of the content of the theorem, aside from the
Juestion of uniformity of convergence, is expressed in
) CoroLLARY IL  If o(w) is continuous and nowhere negative
Jor a < @ < b, the hypotheses of Theorem VII remaining
otherwise unchanged, the polynomials Py () will converge toward
J1) at all poinis where o(z) % 0. _

Additional information can be gained by further elaboration
of the proof of the theorem. Let the previoﬁs notation be
continued in force, with the understanding now that poly-
nomials Py (x) and pa(r) are defined for all positive integral
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values of n, and that these sequences of polynomials are
kept unchanged throughout the course of the reazoning, Let
« and A be two numbers such that og < 0o <8< By, Let
a, o3, and Ay, By, .- be two. infinite successions of
numbers such that

ttg < 00y < g <L oo <00 B ove T By << By B,

Let v, be the maximum of i) for e < < 8, and ,un;;’\{\
the maximum of the same function for ex < =< Bi; Han 45
the same as the previons p,. It follows il:nmediai:ely_ifr;o]ii"x
the definitions that N\

<«

o = pmt Z pmz Z v Z Van ,x'.\\ '

W

Until the contrary case is explicitly mentidbged, it will be
assumed that £, < }wn. Then, @ fwém/ &n < ano, and
tno < Bo (e g™, by the earlier workeNE g = A7a, 28 will
be assumed from now om, gi™ doegg)fiot exceed a constant
multiple of &,, and g
Adbgaulibrary org.i
. Fwong;ﬁﬁw éﬂ.:'al. ¥.org.in
where 4, is independent, \(.';f";if _
Suppose it is knownj, for a specified value of %, that
XA
Yo = Ax 0”&,

A being indé:ﬁeﬁdent of n. The exponent ¢ will be denoted
by ax Wh.ﬁsn,\ihere is occasion to emphasize its dependence
on R-Q}B?' Corollary IT of Bernstein’s theorem,

.'\

&«
N
~

...‘:"\,:" |\ ()| = o
\’%or e 11 < 2 < Sy, the factor & depending on @ By ity a0d
Z 22X Srta, the 1aclor & epending By Bl Hhtly

Sr+1, but not on anything else. Let 2 be a pointin (oekts; Burs)
such that |, (2)| = pm,wi1, and let 9 = pim ot 1/ (2 R o)
Becanse of the fact that pa,xq < faky 61 = 1/(2An), and 1t
is certain that at least ome of the intervals (21— 61, T1),
(a1, ;- 6,) consists entirely of points belonging t0 (e+1, Brt1)s

as soon as  is sufficiently large. This condition being satisfied.
7*
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1 1
ﬂ.'”(x)‘—ﬂ'n(&':l}, = 2 |“"1’! fr—- ni‘t('f)| = _?_ Pn k+1,

thronghout the interval designated, and as it has becn supposed
that & < 3vn < pn k11,

1 g1 '?)pm+1
=] 2y on i, o 2 00, (B8] ok

4 4™ Zhnpa’
Bakt1 = Bipi(nga ) font R
where By is independent of n. Taken witn the re]at1ong

gn X AIe?, p, < A n¢,, this means that
By = By (A dy InH E?H)mmﬂ}’;.\\ k
or, if Brya (4 Ay DY s denoted by Apere
P, Tt1 __<_ Apis n(¢+1)a"(m+lbsf'.

Beeause of a -qualification mmodu‘c}d at one stage in the
work, the result has been obtame& in the first instance only
for values of % from wﬂ&lﬁ@ﬁuﬁrﬁﬂy &ydiit can be extended
to the finite number of Va.lqm 'of n previously neglected, from
#=1 on, by a suitad] aﬂ]ustment of the value of Apt:.
It is recognized therefe{‘e that the successive numbers u,x have
upper hounds qul@ng a sequence of exponents oy, beginning
with 0, = 2/my, and so related that opy; = (o-1)/{(m-+1).
It may rea’di}y‘ be verified by induction that

{ \ 1 1

\* ) m(m—+ 1Y
It ;;\\ any positive number, it will be possible o choose
=4 Walue of % for which @< (1/m)+ 5., With such a value

...\ of &,

Vi < o X Agn™ 04,

All this, it may now he recalled, is on the assumption that
< }v,. But in any case
Vn < 4 e,,—]— Ay nu,fmJ—{—!J £

thlthe last relation, by the definitions of », and &,, implies
a
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)‘(9!“) — P (x) _! =y (5‘3) — Ty (93) | g 5 eyt Ay ntouty &y
for « < < #. More coneisely, since 1 < ™47 for 5 >
| fla) — Pu(@)| < On ™17 ¢,

jt ¢'= Ax+5, the factor O, like those which have preceded
it in similar situations, being independent of ». The previous

results with regard to convergence may be supplemented by a
stating : R\

Tueorem VIIL.  If ¢ (x) and P, (x) satisfy the kypatkeses
of Theorem VI, and if eg< e <8< By, the polynome B, ()
will converge uniformly toward f (&) for e < 2 < ;&{ w1,
and if o positive number g exists such that

hm w (d)/ U7 = 0,

where w () 45 the modulus of mntmmﬁ}sof f ().

CoROLLARY. IF ¢ (%) ds continuoug\ated nowhere negative for
a<x<bh, the hypotheses mtﬁrwg@drdautobﬁxﬁa@l wiml f{z)
remaining wnchanged, the palymmwls Py () will comverge
toward f(x) at all points where o (z) + 0.

For points in the inteﬁbr of (a, ), this corollary super-
sedes the second co’re’gl}ary of Theorem VII, being a direct
generalization of Lt,

There are analagouq but less simple conelusions for
O<lm < 1,

Gcnerahmt}ons of Bernstein's theorem (in appropriately
modified-£prin), leading to the extension of parts of the pre-
ceding. \ndlvsn to certain cases of development in terms of
llal‘"‘acterlstlc funetions of differential systems, have been
given by Miss Carlson (Transactions of the American Mathe-
matical Society, vol. 26 (1924), yp. 280-240, and vol. 28 (1926),
DP. 435-447).

5. Polynomial approximation over an infinite
interval

Another extension of the scope of the method les in its
application to problems of polynomial approximation over an
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infinite interval. To be specific, let £ () be a tunction defined
and eontimmons for all real values of =, and not greater in
absolute value than a constant multiple of a power of z, as
2 becomes infinite in either direction. Among all polynomials
of specified degree n, let P,(x) be the one which minimizes
the integral
fw e [ f () — Pu(2)]der. \\‘
The proof of the existence of the minimum and the uniguéneéss
of the corresponding polynomial offers no new difficiliies in
comparison with cases already treated, and will be gmitted. (It
can be based either oz the construction of a seq oe of orthog-
onal polynomials over the infinite interval With the weight-
tanction e~%", essentially the polynomials of@chebychef—Hermite,
or on the fundamental theorems of redlanalysis. From the
latter point of view, the essential éint in the passage to the
infinite interval is merely that if any coefficient in P, (z) were
large, the integm%w@buy‘bﬁtglﬁiﬁmdnﬂ would be large, and the
integral over the infinite interval would be larger still, so that
the coefficients to be copsidered in the search for a minimum
belong to a bounde;l{hmain.) It is to be shown that under
suitable restrictions‘on f(x) the polynomial P, (x) will converge
everywhere to f;% as n becomes infinite, and will converge.
miformly opgr/any interval of finite extent. The aim will
be 1o arrijré' at z result of this character in as straight-
forward @ manner as possible, without regard for the greatest
attMle generality.
‘r}L\et 7n» be the minimum’ value of the integral, and let @
\:'L‘bé an arbitrary preassigned positive number. Let pn{z) be
N/ an arbitrary polynomial of the nth degree, let

@) = f@) —p@), m@) = Palty—pa (@),
80 that : .
S (@) — Pule) = rala) — ma(a),
and let &, be the maximum of |ry (z)| for —{(a+1) <z La+1

Let #n be the maximum of |m,(z)| in the same interval,
a-ttainfrd fﬂr T = xq.
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By the third corellary attached to Bernstein's theorem on
the derivative of a polynomial, there is a positive number H,
independent of =, such that

L 7in(®) — A (%) | < Hnpn |z~ |2

as long as x is in that ome of the intervals (—a—1,0),
(0, @41}, to which x, belongs. This  condition will be
satisfied, on one side of =, at least, for all values of » from
a certain point on, if jx—z! < 1/(4H*n%). So there will\
be an interval of length 1/{4 H®#%®) throughout whieh {0

: 1 1A
| 70 () — n (0) | < g Fus [ ()| = dé&»
It it is supposed that &, <C }ux, then ¢ \
| | s : 1
lf(x) - Pﬂ (.'B) | - | n (x) - ni{ (@“Z T &

throughout the same interval, Wheih\é‘e it follows that
. P»“: www.f:l?r@'?anlljbrary.or in
yn = e Y. *1’? . :m, My, = e nyy
where ¢, is indeﬁeudept 3% n. The alternative possibility
that &,>> } gy may bex\lﬁft out of account until a later stage.
Now let u be thie maximum of |ms(@)| for —e Lz e
It is certain that gl < u,. Let @1 be 2 point in (—e, ) .
such that |maden)| = w),. By the second corollary of Bern-
stein’s thegreln for polynomials, there is an % independent
of n %{:fl;‘that
‘.},!'\rr\n(x)i < Rt ptn, |n,,(w)-—n,,(x1)| = B pn | 2—a1},
\}f“I\)l —e<x<ea. (Itis clesr that 2 must be positive.) The
quantity 0 = p,/(2hnpes) is less than e for values of » from
a certain point on, since pp < pm. ODE OF the other "}t
the intervals (x;— 8n, 21), (w1, 21-+0n) is then contained in
(—e, ), and there is an interval of length at least 3, through-
out which

1 ’
ep() — () | < e | @] Z g e
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Ifen< 1 tn,

. 1 .
| f@)— Pal)i = | 1a{z) — mn (@) | = 4 M
in this interval, and

2 i
Yo Z e - %"nﬁ ' ﬁ'_: fn < n g )5,
& n

with ¢ independent of n. 'The assumption that &, = L, caprieg
with it the condition ¢ <  }a,, under which 4, L ey,
so that ,.."’“.:‘ '

n i S o K S e |

NG

immediately. In either case
< 6P+ ]

with the reservation merely thiﬁ\\‘;‘l} finite number of vaiues
of 1 may havewh\yg 3% be rgled onit in the course of the proof.

. f\ Loy
If the hypothesis that s, < s} is net fulfilled, w < 4su

raulibrécy .org. .
As py and &, are 1f§ﬁleii~iﬁ$‘1¥nosg Yor |ma(x)| and [ra(e)]
respectively, N

C XY
a "

(@) — Pale) 8= U@y — n (@) < equPyit-t-Ben

for —ae < g&é\.»’ For fixed «, the polynomials p.{x) can
surely be determined so that limy—ce &, = 0, since fi () is
continum‘ls;.'; “In order that P,(x) shall converge toward f(x),
tma'jbﬁ@g’ throughout the interval (—e, &), whatever value
may~bassigned o e, it is sufficient that lima—o0on*®ys = 0.
Iburémains to disenss the order of magnitude of y, under
_appropriate hypotheses on f(x). _
~(0  There will be occcasion to use a lemma regarding the
\_J  behavior of a polynomial as its argument becomes infinite.
Let ps(z) be an arbitrary polynomial of the nth degree,
n>>1, and let M be an upper bound for its absolute value
in the interval —1 <z < 1. Let Xx{z), as in Chapter I,
be the Legendre polynomial of degree % Then p.(x) may
be written identically in the form

@) = 4 K@)+ 4 XK@+ . A X (@),
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where

2kt1 (7
2 -1

From the last equation, together with the definition of 3 and

the fact that | Xx(x)| <1 in (—1, 1), it- follows that

| A < @R+1) M.

Ay = P (@) Xie() dx.

For !z|>1, on the other hand, the identity

\e? Sy
£

T = ’
Xlw) = ;1; f [r+ (E—1) 2 cos o dy O
o 7 %G
gives p O
X (@) < 122, N
since (zf— 1)1 [cos @| < |=}. Consequently, under the assump-

tion still that |z| = 1, ¢

oo (@) < M1+ 3(2:] + 5|20f FO07 +@n+1)[22]]
M{1-+3+ 5+ ERRP O 2R
= (n- 1)3M|2x|"‘§.‘&(u"—!— ) M|2z" = 4 Mn*|22[%

DA

|

If pui) is a polyn i3t of the nth degree, as before, and
if 3 is an upper, oﬁmr |pn ()| in an interval —8 <=z
< B, where 8 ig an arbitrary positive number, then a (@)
is at the samg&iﬁ:_e a polynomial of the nth degree in /8,
and for x] :%.\,’é, l2/8] = 1,
O Im@i= 4 Mut{20/A]".
~N
Th,%S"'}elat.iOn, under the hypotheses stated, constitutes the
~Jemma in question. .
N\ Let it be assumed now that flx) hus everywhere a first
derivative satisfying the condition

|ff(-’1?e) ——f’(aa)! = Ay — x|
T.et 8 be an arbitrary positive number, and let Theorem VII

of Chapter I be applied to the approximate representation
of #(x) in the interval (— 8, 8). The conclusion is that there
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exists for each n>>1 a polynomial p, (x), of the nth degree,
such that

2K 8%
@) —pa )| < — 53—
for — 8 < x < B8, where K is the absolnte constant that

figures in Theorem I of the first chapter.

As an immediate consequence, ~\{\
8 . agaiz (BN
1(8) fﬁe—x’ L) — pu e < KAV A
1g498 (% A\ )
< éK 'f %'J o dz, ,‘t\\ }
'n —0 \\'

3

or, as the value of the last integral is ='? N 2;'

19472 \/
e < PEL O

7t 8O
Furthermore, |p, (&} < M1—|—2K%.,§3).hz’ for —8<z< 4,
if M, is the maaximaﬂlbréulgﬁ(m)jgﬁﬁsthm interval, Let [F(0)
= @, [ = a; thea Ny @)| < a-tiiz, @)
<ttt a2+ F a8 3-11*1\“.‘“

N L
¢ L\

. ) X\ . ,
(Incidentally it is, séem that the present hypothesis carries
with it the fulfiflment of the earlier requirement that f(z)

NE N
shall not bf\cg,me infinite faster than a power of z.) If 421,
as will be @Ssumed henceforth, M; < (@~ a,+$2)A%, and

s"{\ Epn (35“)| _< (3432

N\' ' 3
~for' — 8 < x < 8, where ¢ is independent of A and of %,
\zt‘hough it is different for different functions f(x).
For |z} 2= 8, by the reasoning of an earlier paragraph,

Pa Y < Aoy B0 22800,
At the same time (that is, for |z| = & = 1)

@] < atalal+L iz < (ao+a,_+~§z)w*,.
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and by further enlargement of the right-hand member, with
ag = 2o~ a+ 1 4 for abbreviation,

S@)| £ apa® = *i"" s B2/ AP < % us B2 0 (20/ B

= }Tagﬁznﬂ?ﬂﬂ”’;

it has already been assumed that n = 2. So, with a new
multiplier ¢;, independent of & and of %,
_ ' L |
@) —palx)i £ (4 at a,g)ﬁs nE|2alBl,
[f @) — pn @< cs Bt 22/ 8 &
. ’\
for |z = 8. \\
This means that :

J.:‘I - [‘f(“ﬂ — Pn tx)}g dx ( g ﬂ4 (zl O xgﬂ - d:{,’

the quantity on the right is an uppgi\‘]found also for the
integral from —oo to —4&. wSmﬁtb&@Emry org.in

g

I “‘da‘(I .7:2”3 ‘f’i'rdx—— y ¥ dy
: 1
<5 I yrevdy —"——\l (ﬂ-I—l) ——n‘ :3”#3(%—1)!
\

Without reference’tp more elaborate approximations to the
value of the fagtOrial, it is seen at once that

¢ k1 o1
Qg*ié'—fk iogkdt<f log tdi, k=1,2"",
log [(2@*\1)'] = logt+log 2+4-.-+log(n—1)

A
\ {Llogtdt::nlogn——n—}—l,
(n— Dt <e(n/eym
Conseguently
I " @) — e @ e < 0B (—2-)2“(—?1)“
8 Pn =g B! Ve
1 4n\"
= «2—0533"%“(’8,8) ;

e W,
\

.///
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gn = me e L f (@) — pu @)F dex

S G o A (4 n\"
— e eﬂ‘l nﬁ(ﬂ%) .

The rumber 8 has been arbitrary hitherto, excepi for the
requirement that it be positive and not less than 1; the las@
relation is valid with the insertion of any such value of }
Now left 8 = 2x%. This makes .

O
128 K* 42 i
gns — ot 18eento™ L)

<

As 2 e approaches zero when »n becomes inﬁﬁte, n* e does
not exceed a constant muitiple of 1/x* fep's == 2, while, on
the other hand, g is not less than thé minimum value ra.
Therefore O

J(I:‘w%l?ﬂiaﬁﬁ}ﬁ& .org.in
with ¢ independent of ».

The condition limy.. .« y, = 0 being satisfied, P, (x) con-
verges uniformly towak f(x) throwghout any finite interval,
under the hypothes\'es\stated.

As in the cage 6f'the Fourier and Legendre serics, the method
under discussiéiy when applied merely to the classical problem,
yields little M anything that is new, and misses much that is
well kgo*mr. Clearly, however, the treatment admits 2 variety
of gerleralizations, which remain open for further investigation.
Toltention just one, which calls for no additional labor, the

m\‘fffé‘sﬂniﬂ_g applies without material change if the weight func-
“tion e~ is replaced by any positive continuous funetion which

Is never greater than a constant multiple of ¢, The theory
thus suggested has been developed at some length in a thesis,
38 yet unpublished, by J, M. Karl. Theorems on degree of
approximation over an infinite interval, without reference to
the particular method of this chapter, have been published

by W.E. Milne in voL'31 of the Transactions of the American
Mathematical Society,



CHAPTER IV

TRIGONOMETRIC INTERPOLATION

1. Fundamental formulas of trigonometric

interpolation O

This chapter is coreerned with cerfain styiking analugie’s,:
oth formal and analytical, between the theory of interpolatien
y means of trigonometric sums and that of Fourigr)series.
'he case of polynomial interpolation will be left, out of con-
ideration for the most part, since the analogiesthere, when
he points used for interpolating are eq'ua\ily’ spaced, are
ather with Taylor's series than with .t.l;o;se"of Fourier and

Legendre. Certain extensions to the(base of interpolation
y means of Sturm-Liouville surks Tadbrietihrenyried hrongh
¥ C. M. Jensen (Transactions Qifphé American Mathematical
jociety, vol. 29 (1927), pp. 54379).

Tt to, £, - -+, tas be 2l distinet numbers contained in
m interval of length, 24 for definiteness that from 0 to 2,
nclusive of the lefi-hand and exclusive of the right-hand end
oint.  Let yo, guot +» Yon be any 2m+1 real numbers,
listinet or not.\[#t the problem be proposed of determining

 trigonometfit sum T, (), of the mth order, to satisfy the

30ndition,§w’
s:'.’\ T () = e, y = 0}1}...,2»}3.

AN .
he“sum 7T, (x) has 2n+1 coefficients, on whick 2n+1
O0fiditions are imposed. With the notation

T (@) = o+ areosac—t + o+ 4 qmcosnz
by sin@A - + by, sin nzx,

he conditions to be satisfied are given explicitly by the

’n+1 equations
' 109

$

N 3
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-t a1 €08ty -+ bysinty +-- -+ ancosnty, +basinng, =y, ,
Gotacost; +bisind -t ancosnd; Fb.sinnt, =y
o -+ @y €08 foy + by i bon + - - +Gn0b3ﬂt2n +bn5jﬁnt2n = Yon,
which are linear in the o's and ¥’s. One is confronted by
the problem of showing, directly or indirectly, that the deter-

minant of these equations, the determinant N\
1 costy, sinfy, ... cosni, sinng )
. . £ )
1 cos?y simé ... cosmf sinni D
: g
1 costy sinfen ..+ cO8nts, sin nt{;;;

is different from zero. : v
If « and # are any two numbers, the prodiet

7

o1 Co &
sin —2~(m~—-a:) sin % (@E58)

[ . - p Nt - . - - 11 -
isa mgonomeg’lywsﬁglrggl}ge first oy&er in z, being identicaily

equal to Farbf'g‘;tg
% [cos (—ci; o« — »Ej{a)';;'cos (a, — —; o— % ﬂ)]

- = AP4 coswt By sinz, |
with 4, = }eod(Fe—34), 4, — —}costhutih),
By = —isin @ ¥+14). In the expression

Y el =

S0 § (@<Ch)- - sin § (e — fis) sing (z— fipa)--sin § (2 — fan)
sin kgfk\—* to}- - Sin § (B— tx—1) SIN b (o Biy)- - - i b (i fon)

..:c\h“g\:ﬁn factors of the mumerator can be combined in pairs
\1b give n expressions, each of which is a trigonometric sum
of the first order, and the product of these is a trigonometric
sum of the xuth order; the denominator is a constant which
15 ot zero, sinee the difference of any two of the numbers &

is by hypothesis different from zero and numerically less than
2m. Tt is apparent on inspection that e() = 0 forr 4,

while g (b} = 1. Consequently the function Ty (x) defined by
the formula : .
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a0
Tn ("C) - 2 yk Px (:,L”)
k=10

is @ trigonomelric sum of the nth erder such that Tu (h) = v,
y=0,1,.--, 2%, The linear equations above accordingly
have at least one solution, for any assigned values of the y's.
But if the determinant of the equations were zero, there would
be values of the right-hand members for which there would
be no solution. It is cerlain therefore that the deiermina@:
is different from zero. Whatever values are given to th€'y's,
the proposed problem has one and just ome solution.~In par-
ticular, if.all the #’s are zerc, the obvious solution in which
all the a’s and b's are zero is the only one. 'AQra'gmwmetric
sum of the nth order which vanishes al 2 m=b déstinct points
in a period is identically zero; two trigodemetyic sums of the
nth order which coincide in velue ajja‘n\}; 1 distinct points of
@ period are identically equal. O\ v :

It js easy now to supply a QEQQf‘ of a fact which was pre-
viously assumed as known, ji'}iwnb%lillél%_'if'di’(‘%ﬁﬁnt-he proof of
Bernstein's theorem, namelyithat a trigonometric sum of the
nth order vanizhes idcnﬁtéaily if it has 2 » distinct roots in
A period, one of whi¢his a double root. Let T () be a sum
of the nth order,wl}x‘ch takes on the value 0 for 2n distinct
points of a peribd) say for @ == t, f, +-*s tns but which does
not vanish iﬁéntica]ly. Let &, be a point of the same peried
interval, @iSiinct from &, -+, fm, and let o= T ito}; 1t 18
certain/that y, + 0, since Ta {x) can not have 2n -1 distinet
FO?‘{éih the interval. The expression

A sinjlz—g)sinde—1) . -sin} (@ )
LOF P sinde— wsind(h— b -sind b )
N hich takes on the

% a trigonometric sum of the nth order W
value y, for # == #,, and vanishes for & = f,
must be identical with Tl (). The derivative of this expression
is easily calculated explicitly; it is

., ta, 20d SO

1 i‘ siné(m—tl)--'cos?zfacﬂik)"'smﬂfc__i?ﬂ_

Ty — - -t;)-- €08 40 .
{x) 2 ynk:l sind{&—4 }.e- il ik fi)+e-8in 3 (fo— fa)
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For &z = 4, if v has any of the values 1, ..., 2n, all the
terms of the summation vanish, except the one for which
k = r, and that becomes

sind(&=—1t) - .- 1 <+ SN § (fe— fon)

Dy = sin }(fp—t) -~ sind{o—4) -~ sin 3 {fo— fon)

which is certainly different from zero, so that T, (t) == 350Dy + 03
the sum 7y (x), assumed not to vanish identically, can nét.
have & double root at any of the points #, .-, tm. ()

To return to the problem of interpolation, let the fokbits i,
Jrom now on be supposed equally spaced over a eé‘z:od.’ As
a matter of general notation, if m is any poSitive integer
and » any real integer, positive, negative, or:}ero, let

t = 2rn/m."’\\;

The discussion hitherto (apart from‘tl;e‘&igression of the last
paragraph) is applicable on the Assumption that m is odd,
m=2nt1; ’gfé'd$ﬁ7%éb535§£5%'lQubsequenﬂy to consider
even values of m as well. “Throughout the remainder of this
chapler, in the absence of&tpress indication fo the condrary,
the sign X will be uﬁzferstood to refer to summation with
respect to the index(¥y from r = O fo r = m—1, or what
comes to the safne\thing, as all the functions considered will
be of period 27y over any m successive values of r.

It is a fundamental fact, whether m is odd or even, that

£ '\M
) 2 sin kit = 0
it 13’\1\5, any integer, and that
.»\‘ : 3
v\\:,,: (1)) -Il:tr: 0
O | 2

if k is an integer not divisihle by m, while if k is a multiple
of m (and in particular if k = 0) it is evident that

2 eos kit = m,

since in this case each term of the summation is equal to 1.
The truth of the statement with regard to 3 sin ki is
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apparent from considerations of symmetry. The term sin % f; is
equal to 0. Sinee
ftpm—r = 2h(m—rv)wim = 2k —1ki,,
pacl term corresponding to an index r between O and §m
is paired with a numerically equal term of opposite sign.
Tf m is odd, all the terms are thus accounted for; if m is even,
the term which remains by itself is sin &ty = sin b = 0, ~
In eonnection with the cosine sum it is to be recalled that \
l—I—(:m:su-—[— cos2u+ ... +eosnu = _s&n(_nﬂ“i K
2sinju, \J
{The’ right-hand member is understood to be deﬁne&'ﬁ} con-
tinuity at pomts where the denominator Vamqhes )\If u==rt,
then ru = kit and

L —i— coskts 4 coshtat --- +coskiy ;_'\\qu; (S?lgﬁ-:%)tk h
W 1

But by the symmetry pointed out in bhe preceding paragraph,

the forms on the left ar@ma&mﬁaﬁh{a@eopgm as those of
the sum R

g

— + 08kt -+ wamm_o oo co8kt—n.

If m= 2n+1 and if. \k\ls not dmsible by m, addition of
the two sums giveg L™

Z‘Lo:;ktr = —Silil(n_,_%)ml

sin L Aty ’

and in the labt expression the numerator is zero, since
=2 m‘ﬁnd n+ 3+ = im, so that (n+3)ké, = kw, while
the de 7\mlatol is different from zero. If m — 2w, the term
cog ks’n = cos nki, oceurs in each sum; combination of the
..t\w with subtraction of the redundant term, gives

2 cos ki, — sin(r+ $kt,

sin 1kt —cos nki;
sin nk# cos Ikt cosnki sintkt,
= Sl e —eosnkt
gin $ k¢,

= sinnki cot---l—kt, = gin ks cot(kma/m) =

2 .
the assumption being still that & is not divisible by m.
&
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The proposition of which the preceding lines give an
analytical proof is almost evident geometrically, though
a precise formulation of the geometrical argument requires
a little attention to detail. The pairs of numbers (cosé,, sinf),
r=0,1,-.-, m—1, are the codrdinates of the vertices of
a regular polygon of m sides having its center at the origin,
and the quantities (1/m) 2 cost,, (1/m) X sint,, being the
codrdinates of the center of gravity of these points, muet\\
evidently Dbe zero. The more general fact of the mmshrng
of X eoskt, and X sin k¢, is then obtained by conaldgratmn
of the various possibilities as to the existence g.t;fommon
factors of k and m. O

In the following statements, let p and ¢ bentegers subject
to the restrictions 0 < p < }m, 0 < ¢ < o Then, in the
identities X \\

COS p COS QT = [co:, (péb&)uc%— cos (p+aq)xf,
WWW dbr hblar‘y‘mg in

ginpx siugx = §[cos'(p~——q)oﬂ— cos {p +¢)z],

Cos pe Sin g zo;--‘[sin{p+g):r;——sin (p — @l
\\2

p—g and p+g ar{‘iﬁtegers numerically less than m, except
that p+ g = mNif 'm is even and p — g = §m, so that

2 eospty €5ty = 0 it pd g,
Eqinpt, &in g, = 0 if p¥F 4.
2:9\ )ty singt, = 0 for all p and g,
1
ECUS Pl = Zsm ply = ;, if th«& -,
1
EGO*’!P‘Y = m, 2sinpty = itp =20 or 5 m

Until the comtrary is stated, let it be supposed now that
m 18 0dd, m == 2x-+1. The equations for the interpolating
coefficients: given in the second paragraph of the chapter
can be solved explicitly, under the present hypothesis of
equal spaeing of the points #.. It is known in advance that
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they have one and just one solution. If the 2n+-1 equations
arve added as they stand, the left-hand member in the result
reduces to (2n-+1)ay, so that

-
= g L&Y

(As to the convention with regard to the meaning of the
stgn ¥, it is to be understood here that the summation s
performed specifically over the range r = 0,1,--, 2_?1,,0?\\
clse that 3, is defined ountside this range as a pexjodig
function of the index by the prescription that Yrtontl S Yro)
To determine ax, k>0, let the (»+1)th equapi@’*be mul-
tiplied by coskty, r = 0,1, --+, 2n. On q@i}mn of the
equations thus obtained, the left-hand meniber in the sum
becomes ay >, cosdlit, = ymay = 15(2?1{1{"1)&::, whenee

ity = Z 2?/>QBS kt;.
www.éb}:@ulibrary,org,jn

ol

by, = 2_?33“72 yr 8in ktr.

Similarly,

[3t4]

If the notation is modified to the extent of representing the
constant term in,thé Jterpolating sum by ao/2, instead of a,
the general formula for ax gives the correct value of go also.
Tt will be underteod henceforth that the notation is adjusted
in this way,and the interpolating sum for equally spaced
points £4vill be denoted by S (z), 0 that

SN S = —_-2--ag+a1 cos z-b -+ + Qn COSNT

~

& N . s
% by sin z4 -+ + by SN 0,

the o’s and s being given by the two preceding equation.s
for =0, 1, ..., n. The resemblance to the Fourier coeffici-
ents is apparent.

Even if it had not been known a priori that the equations
have a unique solution, that fact would be an immediate
consequence of the work of the last paragraph. For the

B* .
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work shows that if the equations have a solution, it must be
the one indicated; that is, they ecan nof have more than one
solution for amy given set of ¢'s, But if the determinant
of the equations were zero, there would be values of the ¢'s
for which there would be infinitely many solutions. This new
proof of the non-vanishing of the determinant, howerver,
depends essentially on the assumption that the £z are equi-
distant, and so is less general than the one previcusly given.

~

N

The formal resemblance to the ecase of Fourier series iS),

further borne ‘out by substitution of the values of th;z“as"

and b's in the expression defining 8, (x), and rearrangement
of the result by means of the identity for a sum oi\cosmeﬂ;
\

Nalz) = _‘)mz_]r[ + 2 (coskt,-coskx—r blnktrsmﬁ;x)

0n+12y,[2 -|-2cm k&*’ﬂ)]

Sy S %—*%jw o
*)n—{—l 31n§[§f—m) ’

Incidentally, the correctness™of the last expression as a solution
of the problem of mtel;@slatxon can be verified directly, by
substituting @ = f,;\for any particular value of g. For
fe by 20 )T!(Jn+1),sm(n+1})(tr ty)=sin(r- g)m="=0,
and all the tegmg” of the summation vanish except the single
one with ay v&mshlng denominator, while the limiting value
of the guc\ment of sines in that term is 2n--1, so that
Salt Oy

\0:1\\ let the problem be changed by supposing that m is
ul’n' m = 2n. Corresponding to the 2x abscissas fy, -+, fam—1:
lcl 2u numbers g, « -+, you—1 be given, and let y, be defined
for other values of r so that gz, = y,. Consider the
question of the existence of a trigonometric sum Ty(z), of
the nth order, represented for the moment by the notation
of the second paragraph of the chapter, to satisfy the con-
ditions Twlty) = 4, r=0,1,...,2n—1. It is not to be
expected that the problem will have a definite solution, since
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mly 2# coudifions are imposed on the 2n--1 coefficients.
fhe precise nature of the indeterminacy is brought out by
oing through the formal manipulation of the equations.
WVritten out at length, these are as follows:

b+ a cosfy, Sbsintg, +--Faycosnt, L+ bysinng,
= !jo.-
o-Facost, 4 b sing A apcosnd, o bpsinud
= ylr

!u"’"al cos !zﬂ—l—l—b] %mfen 1—|- -I-rturowf:an*:—k bnﬁmﬂf'n e
* _'f‘.‘w-q.a,,

divect addition of them gives e\
nay, = 2%, @ = (25‘:')”2"" ‘\

Multiplied respectively by coskt,, coski,, - - bbq’?.t,“ 1, for
my value of & from 1 to n—1 incluswe\ und then added,

hey vield
a = (1/7) Z'y C}(\/Sil??’aullbl ary.org.in

IJ_!; == (lfﬂ)z;‘]:( Slﬂk{l

0 far there is no ambigui x\ﬂnd no formal difference from
he case previously treated,)éxcept the replacement of 2n - i
¥ 27. When the (r—{—hth equation is multiplied by cosnl,,
here is a dlﬁerencp becanse in the present case »n . Jm,
nd > cos’nt, ihfqual to m = 2n, instead of 4m. The
etermination i;,:\.@fill perfectly definite, however:

W
£\

\\\ dn = (2 yr cosntr)/(20).

ut ab\ L = ra/n, the numbers sinn{, are all zern, and the
SQ bf these quantities as multipliers does noi lead to any
etermination of 5, at all.

It is now apparent how the problem of interpolation with
1 even number of equidistant abscissas can be formulated
) as t¢ have a determinate solutien. If Sa{r) denotes an

Xpression of the form

nd similarly
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-;—ao+a1 cosx+ - apy cos(n—-l)m—i——;— fin COS R
+bsine +-- -+ by sin{(m—1)z,

the conditions S, (%) = y, are expressed by 2n linear equations
for the 2n coefficients. The solution of these equations, if
they have a solution, is given uniquely by the formulas

= (lffn)Zy.-coskt,, by == (Un)Z'y,sinki,,

for k=0,1,...,n. But if the determinant of the system\
were zZero, there would be values of the g's for which. Iﬂore
than one solution would exist. So the value of the determfnant
is certainly different from zero, and the proble:lx has the
unique solution indicated. As sinni = 0 forvall values
of r, the expression \4

S (..."‘J) + by sin nr, y .\\.,’

with any value of b,, likewise takes-bn”the value y, when
& = f,; the indeterminacy of the Prbblem as first proposed
consists merel‘j’“"ﬁldhiﬁuldgh?ﬁl%fégjﬂﬁetermmacy of the coef-
ficient #,. The subsequent dmcusmon will relate to the sam
8n(x) as defined at the begrmmng of this paragraph, with-
out the term in sin nzys

For deriving a conc\me expression for S,(x), to be sure,
it is convenient ¢ a‘s\ a matter of form to include a term
$basin nx, thel'spefficient b, being defined by the general
formula for by with k = n; as each term of the summation
vanishes, this-gives b, = 0 automatlcally ‘Then it appears that

7\

n—1
S,,(;r{é L — 2| 5 +3§1cosk(t,—-x)+%cosn(ty-—:c)],
0(, \as B

a \ ¥

\ 1
N/ §+005u+ +cos(n—1)u—|——;--cosme
= Lsin otiz
— g Y C 9 ]
by subtraction of } cosnu from the identity previously used,

S () = '21; Ey,- sin % (t, —z) cot. % (tr—2).
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Ag in the case of an odd number of points, substitution of
x == 1, gives a direct verification of the validity of the formula
for purposes of interpolation. The analogy with the partial
sum of a Fourier series, however, is not superficially so much
in evidence as before. '

9. Convergence and degree of convergence
under hypotheses of continuity over entire period,.

For the discussion of the apalytical properties of .th}\
interpolating sums Sy (), particularly questions of congergenee
as # becomes infinite, let the given numbers o ke values
of a function having specified properties: let f (z;i\lié a given’
function of period 2, -and let gr = f(E)«\ “Then 9, ()
coincides in value with f(x}) at the points #oand the question
ix to what extent Sy () furnishes dn approximation fo Sl
at intermediate points. \‘ “ '

In the first place, let f(x} be 2'bpunded function having M
as an upper bound for “its"AbyGiHtealmere Then o corres
sponding npper bound eanthe assigned for |8 (@)|. Let
m—2n-1, Ifz has ofieof the values &, [ S (@) | = &)
<M. If z is not on® of the numbers #,, let ¢z be that one
of these numbers’.lxr&(:h is mearest to x, .or one of the two
nearest, if two are equally near. Then

‘\___?_T__é e __1__.
.’\.“. te 2'3‘3"]—1 =X = R+2n+1

g £/
\N

B @ae of the periodicity of the functions concerned, as has
Jbaen noted already, the summation with regard to r in the
~Oformula representing Sy (%) can be extended over any 22 11
) sueccessive values of #, and in particular from R—nto Btn
inclusive. Accordingly
1 RE sk D)
R P if=§_nf () " sin 3 {tr—2)

¥ K| snwt DG |
2n+1 ySF-a! ¢ Si-ﬂ%(tr_"x) ]

<
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The absolute value of the last expression in bars never
exceeds 2n - 1, as may be seen from its interpretation as a sum

of cosines. This observation will be sufficient as far as the
three terms corresponding to the indices » = E—1, R, B+
are concerned. The nombers {g.; 2z, tRia—&, o+, IR{n—2
are respeetively greater than 27 /{2n+1), 4x/@2n+1), ...
oy 2(e—1)7/(2n-+1); the same thing may be said of the )
sequence of numbers {y o—zx -, frg—x!|, - oy tR_,,-—w1;\\
and for all the values of + in question, |t—a! < 7, so that
'sin g (fy — )| = (1/m)  ,—a!. Hence N\ 7

L 3

\w? P

N/
L 3

e |sne+ Dt—a) | Y
4-:-2R- [ sin % (fr— ) ‘ ..’:;'\

R—2 B+n : 7 i

Ca _ sin (n 4 — o) |

= 3@n4-1+ (1‘__%:__“_%9__23:_'_.3) Sip\%\ﬁrv“ x) |

by

. ST SR RS
S 32nt b+ (,2;_,,*5%) =]

< 3(n +‘“i‘i"-“ii‘f~lrbfas&riy E‘r&h? 1

L Y | tr— €T
) _ n—l"f = 1
CAEnADH @t DI — d@atDtEntn 3
NS J=

N N | —
z 4(-?3—{—1)-}-[21;—{{)"1 T{---;4{2'n+1]-1—(2?1+1)10g("? 1

S 24 D04 Rog w),

and
AN

2,

4
The Q.;ay barenthesis does not exceed a constant multiple of
loglaytor 12> 2 and 1S, {@)| does not exceed a constant

'"\;ﬁ'@hiple of M log n.

h ¥
\/
4

7 Similar reasoning, with minor differences of detail, applies

when m = 21, the sum S, (2} then being given by the formula
of the third paragraph preceding., The conclusion may be
stated comprehensively for both cases as

LEMMA L If £(a) is a function of period 2 = satisfying the
condition et

SR <M
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for all velues of %, and if Salx} 45 the interpolating sum of
the nih order for [fix) corresponding fo the subdivision af
a period either indo 2n-+1 or inlo 2n equal parts, then

| Su@) | £ CMlogn

Jor n>>1, where C s an absolule constand.

The representation of the constant by the notation used' &
in the lemma preceding Theorem 1X of Chapter I does ngt,
imply that the eonstants are the same, though of course~b N
lemmas could be stated together, with a single aymtml to
represent the larger of the two constants. .\

For the apphcatwn of the lemma, it is to {‘@ noted that
| f)— Spla) | < M+ CM logn, which is likewise not greater
than a constant multiple of Mlogn, say B log n; that the
interpolating expression corresponding $0dhe sum of two given
functions is the sum of the interi)ol‘ating expresgions con-
structed for the two functions separately, and the error of
the sum is the sum of the” mfﬁrawlﬁﬁﬁoﬁgmn 2n 1
the interpolating sum Sy (x}‘ft)med for a function f(z) which
is itself a trigonometric ‘sumh 7 (x) of the nth order is iden-
tical with 7%, (x}, qmo\ v reason of the interpolating property
Sa(x) and Ty (z) are trigonometric sums of the nth order
coinciding in yalwé at 2% -} 1 distinet points of a period.
Taken togeflfer> with the lemma, these observations yield

ThEoREWYY If f(x) is @ function of period 2 r, if Salz)
is the miérpolatmg sum of the nth order for o) cor raspm:qu
to SIQ Subdivision of a period into 20+ 1 equal parts, n-1,
rm@\? if there exists a trigonometric sum Ty (x), of the nth order,

|fla) — Tl | < ta

Jor all values of x, then, for all values of x,
1F @) — Sa@| < Beylog n,

where B is an absolute constani.

When m — 2n, the interpolating sum of the nth order,
as defined above, for a trigonometric sum 77 () of the nth order
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is not in general the same as 7% (x), since the interpolating
sum does not coutain any term in sin nz.  But the inter.
polating sum Snyi(z) of order n-t1, obtained by taking
m = 2% 42, iz identical with T, (xr). For the coefficient
a1 in Sy—j (x), given by the expression

[1/(n+ 1] 2 Tulty) cos (n41) t, ,

reduces to zero, since each of the sines and cosines in T;A;ﬁ)?
through sinnz and cos na, is orthogonal to cos (n -+ Jafor
summation over the finite range in guestion; and ,jfi’i)llows
that S p1 (%) and Th(x) are trigonometric sums o_f 1@3”%0’2 order
agreeing in value at 2w 4 2 distinet points q(’a;.period. The
above statement may therefore be supplemenpted as follows:

THEOREM | (continued). If Spra(x) indhe inlerpolating sum
of order n—+1 corrvesponding to the Sibdivision of o period
into 2m+ 2 equal parts, the hypadses remaining otherwise
unchanged, téﬁ\ﬁw.dbl'aulibral'y_qy.gfiii

L) — S (@) "Bey log(n+1),

where B has the same w[ﬁé as before,

As log (n+-1)<2Me2n for n>>1, the right-hand member
may be replaced bg{’}a’Ben log . As an alternative, n may
be replaced by '-i-gx—’l, to give

MO — 8u) € Beya logn

for m =249,
ik¢ Theorem IX of Chapter I, the present Theorem 1 can
be{coibined with Theorems I-TV of Chapter I to give a suc-
,\ife‘ésion of more specific results. The cases of an odd number
\3 ~and of an even number of subdivisions ean be eovered by
a single formulation each time, by virtue of the observation that
1/(n—1)< 2/n and wf27x/(n—1)] < e(dnfn) < 2w (2 n/n);
for n>>1. The symbal A is merely a notation for the largest
of wiat would be obtained in the first instance as a finite

number of different constants, and A4, similaxly:
CoroLLary 1. 77

) — fle) = A _551|
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Sfor all values of = and x5, A being o constant, then

Allogn
H

() — Spl(z)| <

Jor m=2n+1 and for m = 2n.
COROLLARY IL.  Jf f(x) is continuous with modulus of con-
Hinuity w(d),

J@)—Su@) £ dw (25:) logn _ A \\\

Jor m=2n-+1 and for m = 2n, «‘ o
CoroLLary a. The inferpolating sum Sy{x) w:-‘wergm
wniformly to the value Flx), as m becomes mﬁmte\\t]ewugk
oidd or even values (o both), if flx) has a nwdzci(w of con-
tinudty o(d) such that lims_, o(d) log 6 = 0.
‘CororLary 111, " If F(x) has a pth f?emz@‘;m f‘jliJ (@) such
that
P ) — P @) £ »‘aewa«l
www.dbr aulmral Ty.org.in
Jor all values of x and xy, 4 bﬁmq a econstant, then
F)— @ dellEn
\
Jor m— 2541 and.fq;r m = 2.
CoroLLARY IV.y Flx) has cverywhere a condinuons
pth devivative with tnodulus of continuity »(9),
2N \./

z\f (»f) — 8a(2) | = - w( 2ﬂ)logn

Jor m *;\9?1—1 and jfor m = 2#.
Ifz \each af these statements, the conclusion holds for all
g’?t{tfes of @, and for all values of n = 2; the coeffivient 445
. absolute constant, while A, depends only on p.

3. Convergence under hypothesis of continuity
over part of a period

The nezt proposition is analogous to a result obtained in
the second ‘and third paragraphs of Chapter II:
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Lemma I If f(2) is @ function of period 27, bounded
and integrable in the sense of Riemann,

lim (1/m) 2 £ (#) eos nty = lim (1/m) > £(t) sinnt, = 0,

as i becomes infinite through odd values (m = 2n--1) or
even values (m == 2n) or both.

There is a noteworthy difference in the hypothesis imposed
on f(x); it is in the nature of the case no longer sufficient
to assume merely that the function is summable, or Sugatﬁaljle
with its square, since an emumerable set of very large.values
of f{z), while not affecting the definite integriils of the
earlier chapter, might throw the present sums'\é;%'ely out of
proportion. QO

Suppose first that m = 2n 1. Let\ the summation be
extended for definiteness from » — U t6 » — 2m. Since

e == 2rx/(2n-1), O
dbraigrary srain
nym 2TERCSLIIOAREI ey
2n41 2ustl 2n4-1
FIE Ny
eosndy = (— 1) cos ——— >
{(— 1) cos 2?%'\_[_1 :

_ 1 2n f( 4jm ) 25m
2 2 F1 B 1) 2nF 1
A1 3 2n_f(_2(2jﬁ1l{:_) T
NS LF =SS 2n+1 ¥ a1

:~Wﬁéﬂ % becomes infinite, the first sum in the last member
“\‘zpproaches -
\ 3

T
Jof(2u,) cosu du,

by the definition of integrability, and the second sum has
the.same limit, so that the whole expression approaches zero.
(Ne_lther Sum as it stands is exactly of the form that would
ordinarily be written down in defining the definite integral,



1V. TRIGONOMETRIC INTERPOLATION 125

but the discrepancy in each case amounts to half of a single
term, and approaches zero in the limit.) As

; Faia
sin nty == (— 1)+ si
sin 926, (—1} mngﬂ_’_],

similar reasoning applies to the expression
o \\’\

[1/@Zn+ 1] 2 f %) sinni,,
If m = 2%, the summation going from r = 0 to » == ?”:'—,1'
'S\
b = ra/n, cosnt, = cosrw = (1Y,

1 , N
%Z‘f {l) cosnt, . x\ ;

1w . 2fn ¥
L] 2 " f( 7

1 & AN @2i—1)
dn ) )“"9‘?%5&"“ )
O

Fpaches

\
Each sum in the tast member ag
raulibrary org.in

wwy‘.x;d.
J: ’f(? u) du,
and the whole expressioﬁ’appraaches zero, As for the other
expression in the stateénient of the lemma, sin 7 ¢ = 0 throughout.
Suppose F(z%G5”a function of period 2m, bounded and
integrable in™the semse of Riemann, which vanishes for
70— <afdi vy 4. Tt will be scen that Sa(ae) converges
to the palwé 0, whether the values of m entering into the
de‘qﬂiﬁl“@{ﬁ of the sums S,(x) are even or odd. In hoth cases,
Su{)* can be represented, artificially but with readily verifiable
,.\‘Rff‘-"“r&cy, by the single formula

VT se =L Seysat—geoty G

T 2—1m [1— (— 1)m] 2 f () eos n(t— @)
AS cos n(f — 2) = cos na cosaut,+sinne sinniy, the las?
Sum, taken with the factor 1/(2m), approaches zero umforml_(}i
for all values of x. And as 7 cot-é-(t——x(,) is bounde
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and integrable in the sense of Riemann as a function of ¢,
the first factor vanishing where the second factor is large,
application of Lemma II to this function shows that the first
part of the expression for §,(z) approaches zero for x = z,,
It two functions, each bounded and integrable in the sense
of Riemann, are identical from axy— 4 to oy — 5, the difference
of their interpolating expressions converges toward zero at x .
if flz) i8 any function of period 2n, bounded and integrabigs,
in the sense of Riemann, the convergence of the cormspogu{éng
mterpolaling sums- S, (x) at any specified point, as m (bgrories
infinite through odd or even values, depends onlly -on the
behavior of f{(x) in the neighborhood of the pofm‘t%n question.

Now let f{x) be of period 27, bounded and jnfegrable in the
sense of Riemann, and identically zero for @ < 2 < 8+ 7.
and let attention be directed to the proklem of showing that
8. (x) converges toward zero unifo.rgﬂg" for « <z < B Tt
was noted in the last paragraph that S,(x) either is given
identically by ‘tiie" SHREHIETY QL8

j; 2 F(t) sin nfg”;h— x) cot%(z,— ),

or differs from it by an gmbunt which approaches zero uniformly
for all values of z @9 % becomes infinite. Furthermore, the
terms resulting, from the expansion of sinn(f, — ) may be
considered separately, and as the factors sinnx and cosnx
are boundedy it is sufficient to demonstrate the uniform eon-
vergence/of the expressions

&

N
Ny

*

L 1 .
;‘;Zf(tr) cos ity eot o (ty—2),

e A\ W

O _ ;;Zf(tr) sin % ¢, cot%(tr—x),

- @8 z in the argument of the cotangent ranges over the inter-
val {«, A), .
Suppose in the first place that m — 9n-L1., Let x be
restrieted to the interval <x< 8. Let C(x, ) be a function
which vanishes when |¢{— ! differs srom an integral multiple
of 27 by less than 4, and is equal to eot 1{t—uz) elsewhere.
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Then £() C(x, &) is identical with £(f) cot 1 (¢—z), under the
restriction imposed on z, while ('(z, #) is bounded for all
values of 2 and £, never exceeding cot }¢ in absolute value,
and js R-integrable as a function of & By adaptation of
the formmuias of an earlier paragraph,

[27/ (204 1)] 2 Ft) cos ntxClz, &)

i equal to

(g, Ut of, M) $
£2¢1+1f(2n+1)‘"’°“ ontiC O entl) L
minus another expression of similar form. Let u;z?jn{@ﬁ%él),
jo=0,1,..., n, and let Au;= 27/(2n-+1) forgx§\0:~l,---,
n—1, while A, == 7/(2n+1). Then the smjust written
down differs merely by the quantity N\

(\\f inm )

dd f(—-‘mn )cos—-‘zn—n-—(z"w 1T
2n--17 \2n+41 20N 2n+1 ’

§. .
which approaches zero Hﬁf‘éﬁﬁﬁ?hﬁr%“vﬁﬁﬁs of x, from

o

Zu.f@ﬂy) 00';;1{; Oz, 2u)) duwy,
i= N

a sum corresponding.foa subdivision of the interval (0, )

into »+ 1 parts, Sot”all of equal length, and defining the

definite integrab\

P\ J:Tf(2u) cos uC(x, 2u) du
in the lisfh:"
Thé\bssential point for the present argument is that the

sup \differs from the integral by an amount which approaches
. ;Zé:TO' uniformly with respect to ». Let M; and m; be the
(least upper bound and the greatest lower bound of the

integrand over the jth sub-interval, F; and p; the corresponding

bounds for the factor f(2u)cosw, and @ and g; those for

the factor C(z, 2u). The difference between the sum and

the integral does not exceed

_20 (Mj—m} Ay
Ji
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Let M be the least upper bound of  f(2:)|, as u varies
withoutrestriction, anupperbound consequently for | /(2u) cos !,
and (= cot}#) the least upper bound of | 7(x, 2u)|. Then

Mj—ny < M(Q;—q)+ Q(E—py),
since for any u, and u, of the sub-interval in question

J(2us) cos us Clz, 2uy) —F(2u,) cos u, Clz, 20,) '\{\
= f(2u) 08 vz [C2, 200) — O, 204;)]

+Cx, 2u} [ £ (2us) €08 ts ~— F{20) 08 14y]. ‘:‘:

As f(u) is by hypothesis integrable in the sensezg(\f{'femann,
Sf(2u)cosu is R-integrable also. Let s belafr’ arbitrary
positive quantity. By the property of integrabitity (more
specifically, by Darboux’s theorem) it iszgossible to choose n
g0 large, and the intervals dw; in con§ei;uence uniformly so
small, that NS,

f www.dbrauliebral'y_or _i}}v .
py iy dprarvogdh) e
fzo( - pJ)AuJ - 2@ ,“.";{-—-0 (‘2 (-‘PJ pJ)AﬂJ'"‘“‘ 2
On the other hand, N
R

@)

can not excead t‘sié\bogal variation of C(x, 2u) as u ranges
over the interydl X0, =), a total variation which is finite and
independent of -k, being equal to 4. Henee if » is taken
so large that"274/(2n+ 1)< /(8 Q M), it follows that

%sw: n

R\ 2 M@y~ gy duy < g“
¢ J-=10

£ND .
\m&}"there exists an N, independent of &, such that for » = N

j;o (M — my) Auy < e,

The other sum anzlogous to the one just treated is

2% (2@i—Nm\  (@j—Dn | 22j—DLm
J;{‘?““‘rlf( 2n-F1 )"’OS 2n+"1_0(”’ SETESEN S
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By addition of the term

T {2020 —1)7
s/ Tt

Ern— W( 2(2”-1);1)
2n+1 Q-1 '

whiek approaches zere uniformly, this becomes a sum ap-
proximating the same definitc integral as before, and corre-
sponding to a subdivision of the interval of integration into
n—1 parts each of length 27/(2n-41) and one part 0{\“
length 3:7/(2n-+1). The difference between the sum amd
the integral approaches zerc uniformly, and the diﬁ&teﬁeé
between the two sums does the same, which meapjs};ﬂ’rii-t-

. N
Elq_--l-z_f’(t,) COS R iy cot%(h —EX)

converges uniformly toward zero. TheMcorresponding cx-
pression with sinsnf. in place of qo\s@ﬁ; can be treated in
the same way. This completes the¥proof of uniform con-
vergenee of S, (x) for od “?’E]du%féa%lf byary.org.in

For m = 2n, the discuﬁsjéli'hf the sum confaining cos % fy
is slightly simplified in fofm by the fact that cos ni, reduces
to (1), and by the .@ct’that 2 a/m is an exact submuitiple
of o, but othersze:\fnllows essentially the same lines as
before. The suffi’with sinz# vanishes identically for ail
valaes of n, sifiee sinnt, = 0.

The conglagion is embodied in

Lenn v IIF, If f(2) is a frnction of perind 2 which is
bounded yind integrable in the sense of Riemana, and which
cindshes identically for « — g < o < 841, the corresponding
~'Qﬁa‘p9laté”?§ sums S, () converge wniformly toward zero SJor

NSz B, as m becomes infinite Hrough odd or even values,

ar hoth,

On the formal side it may he pointed out in passing, and
might have been noted before, that for m even Su(z) has
the alternative representation

1 . : 1,
™ sin anf(t,) cos n f cot 5 {t.—x},
o
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though the appearance of sinn. as a factor of the whole
expression is illusory to the extent that corresponding to
each value of x for which sinnz = (O there is a factor
¢ot 3 (4 — ) which becomes infinite,

Lemma III may be combined at once with Corollary 1Ia
of Theorem I to give

Treorem 1L If f(2) 48 a function of period 25, bounded
and integrable in the semse of Biemann over a period, el
continuous for « —q < @ << B4y with a modulus of -
tinvity ml{d) such that 11rr1d~_n m( ) logd =0, the cor mpamiem
interpolating suwms Splx) converge untformly toward _f(r) Jor
o2 8 as m becomes mﬁnztp Hrough odd or.Q\;u virlues,
or Doth, ,\ /

. 4. Convergence under hypothesis of limi{ed variation

There are theorems of convergence féy¥finctions of limited
variation, analogous to those obtained)in the case of Fourier
series.  Liet /() MopadiBetiqnogf hperiod 2, with limited
variation over a period, and let aJiave a value, to be regarded
for the time being as fixed, such that £(¢} is continuous for
t=u. It will be shown “thit S, (x) converges toward f(z)
for the value of & specified.

Let ¢, (£} and ¢, be the positive and negative variations

~of £{f), measured Trom the point ¢ = — 2, say, so that

.‘ftzi =e f(—27) -+ 5, () — 92 (1),

while ﬂ ‘a,mi s are monotone increasing, and continueus for
£= &\ tThe point = may of course be thought of without
1059 .o generality as belonging to the interval (0, 2sc), and
uﬂl,en there will be no oceasion to take account of values of
¢ less than —27.) Consider the case m == 2n-1. If =
is one of the numbers 4,, for a specified value of n, Sa(a) = F)
exactly. Otherwise, let ¢z be the number # which is nearest

to & (or one of the two such numbers, if two are equally
near), so that

by —

Zn41

<
srs it 2n+1
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et the summation over » in the formula representing Sy(x)
be extended from R —n to B+n. The corresponding formula
with f(t) replaced by 1 represents 1-identically, since I is
a trigonometric sum of order zero. If this identity is multi-
plied by the quantity f(z), independent of r, and the result sub-
tracted from the formula for S, (x), the difference Sy {(x) — f(@)
is obtained in the form

o — — L S e sini(n-+-3)(t—a)
$al@) —F @) = G, 4 M8~/ e T
The right-hand member is equal to the difference bq}vééﬁ
1 & sin (n+ 3) (W)
T T ) — e @]
and the similar expression With_ @g (b —g:; f;é) in place of
¢1 (tr) =~ @1 (). AV

‘The quotient of sines mever exceéds’2n+-1.in absolute
value. In the term corresp%d" \to the index r = E, tr
approaches x as n becomes 1 mﬁ‘e]fr?if'doﬁf&) approaches
g1{z), by the continuity of wh, and the whole term, multi-
plied by 1/2% - 1), apprdaches zero and need not be further
taken into account; it suffcient to consider the sum from
R-+1 to R+n and the corresponding sum from % —=
t0 B—1. ¢ '\\..

Since fgy; -*—:x —fg—uax+ [2_9’:17,-"'(2?3 + 1)] ;

Slﬂ(r‘f’l‘{t’%) (py — 2y = sm[(n%-—;) (tﬁ—x)'{‘j?t]

N,
O
\m‘; .and is independent of j, except as to algebraic Sigh. It
3 {tz1j—a) is denoted by w;, and if ¢ stands for'O or 1
aceording as sin (n—-+3) ((z—%) is positive or negative,
| 1 e sin(n+ ) &—a)
S n +_] r§+l [pilt)— o ()} sin § (h— 2

= (=1 2 (W 4 B,
£

<

= (— 1)/ sin (n+ —;) | (tr—2),

5*
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where

Ai= gz +2up— g {2}, o |s‘?2{%)}%??x’i
The mumbers 4;. Bjare all positive or zero, As j increases,
4; increases or remains unchanged; u; is always between 0
and 7/2, sin w; increases, and B; decreases. Let T be the
total variation of f(x} over an interval of length 2 w. Then A
the A’s have the upper bound } V, since the positive and\\
negative variations of a periodic function over a permi ale:
each equal to half the total variation; while B;, Whggﬁl is

equal to the absolute value of N
| R
_sin(n+4-4) (tay,— ¥) N\
Zn+1)sindins,—2)° /
can not exceed unity. w\J)

After the analogy of the proof in the € casv of Fourier series,
where the second law of the mean \&as employed, it would
be natural here tw dbeodhidrortiosd B! summation by parts.
The formulation can be shghtly,slmf)hﬁed however, by reason
of the fact that the qequam,e‘s 4;, B; are both monotone,
though varying in npposne\senses In general, let a,,---, ap.

biy --+, by be two sets\ f p numbers each, satisfying the
condltmm ¢
ﬂl/ﬂ2> ;>|‘.Ep>0 bl;? FJEE---:;FJpZO-

Let 5= 1, ;—;x&;, 50 that

,.:}“’0 =TS S g Iy
Then AW

K:

\ 2; ("_1“" it bﬂ""j»i—l = b}) — bp—l _i_ .
"\ g
<\} - = 'bl _ Cjﬁ') — f{a {b; —_— C}\q_l} —|— PR

= bles—ds+ -y —Alay ep— as g1+ - )

Siuce both the #’s and the ¢'s are non-negative and decrease
monctonically, the value of each parenthesis in the last
expression is positive or zero, and not greater than its leading
term, in one case @, and in the other case a, ¢p, Which in tun
is not greater than m &. So the whole expression is the
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difference of two non-negative quantities, neither of which
can exceed @ by, and is itself not greater tham a,b, in ab-
solute value. To emphasize by words rather than by subseripts
what is essential in the conclusion, the absolute value of

ﬁ: (— 1) ftj .bp—j-l-l
Fosst

does not exceed the product of the largest of the a's by the
largest of the b's. "\

Let ¢ be an arbitrary positive quantity. Correspondin to,
the continuity of ¢, , let d > 0 be chosen so that | apy () — @)
< lefor it—ax < 4. Let the sum S (—1Y 4;Bjof the
second paragraph preceding be broken up into ;53?11} X and
> in the first of which j ranges over the vahles for which
2u < &, while the remaining terms make up the second.
In 3, the largest value of 4;is not gt;eglt\er than § ¢, while
B; never exceeds 1, so that by the'c;mckxs’fon of the last para-
graph, with suitable adap%@g%glfaﬁ*f&?lgbscfi ts, ! 2’ <.
In 3", 4; < } V throughout, while B; g R+ 1) sin 3 )5
eonsequently \J

2 g\\V/ [2(‘2 n-1)sin —;" 5];

which i3 less thanl%¢ as soon as » is sufficiently large.
Hence '+ 3'4 ob, in the earlier notation, the sum from
E+41 to R-4ny multiplied by 1/(2n-+1), approaches zero
a8 n heco 'ta:,s)i'nﬁnite. The sum from E—» to B—1 and
the corpegponding sums with ¢y in place of g can be treated
in t@ﬁﬁmc way, to show that S,(@) — flx) converges
t“}"ﬁ}‘ ZEer. '

" Ot fla) is continmous everywhere, the- uniform continuity

S of 9, and y,, bearing on the choice of & in the preceding
paragraph, and, as a detail, on the convergence toward zero
of the single term in each sum for which » =— R, yields at
once uniform convergence of Sy (%) toward /' (“’)'.

Finally, a precisely similar argument can be carried throlugh

for the case of an even number of interpolating points,
m = 2,
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The conclusion is

Tueorem III.  If flx) i a function of peried 2w kawnq

limited variation over a period, S, (ax) converges toward flw)
“at every point where f(x) is continuous, when m becomes in-
Jinile through odd or even values, or both; if f(x), still sup-
posed to be of limited variation, is continuous everywhere, the
convergence is uniform for all values of x.

This result can be generalized immedjately by reference {
to Lemma IH, and the more elementary fact that convergeneg
4t any point depegds only on the behavior of the i‘unctlon mthe
neighborhood of the point: wf

CorOLLARY., If flz) is a funmction of period 2TQ\baunded
and integrable in the sense of Riemann over, Sg“period, of
limited variation for xp—1n < a < xp-+ pyoand continuis
Jor & = xy, Sulm) converges foward f(x@,, if flx) 48 con-
tinuous and of lmited variation for &<~y < x < By
the hypothesis remaining otherwise mz\éhaﬂqed Sy {x) conver qa?
toward Jx) wndfodhlpuferar Yiﬁfﬂ‘.lﬁ R.

5. Degree of convergence under hypotheses
1nv01vmg limited variation

Let f(x) once more'fhe of limited variation over a period,
with total variatién'ly Let ¢, (x) be the positive variation
of f(«) from O2tg » when »>>0, and minus the positive
variation fremi’z to O when x<C0, and let ps(a) be the
COITeSpOnduleg defined negative variation funetion, so that

f(r}bc SO + o) — 9o (), 4:(0) = ge0) = 0.

«L‘Bf m = 2n+41, #>>0. Consider the sum X f{¢) cos nir
extended specifically from »r = —=n to r == n. The sum
2.f(0) cos nt, vanishes, In >, (L) cos nt,, the term corre-
sponding to » — 0 vanishes with ¢, (0). It has already been

observed that coswé = (— 1Y cos [rn/(2n-+1)]. In the
sum : '

,,Z; py () cos nt.,
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the factor g, (#) increases monotonically, having the upper
bound ¢ (), while, as »#/(2n - 1) remains within the limits
(0, 7/2), |cosnty| decreases monotonically, having the upper
bound 1. Consequently, by the reasoning of an earlier

paragraph,

ki
‘ ] ¥ (#ycosnt,| < g (7).

yi=

Similarly, the absolute value of the sum from —# to —‘1\\
does not exceed |y, (— 7). So the whole sum fmm"j—:w't?:
to +n does not exceed _ . W
510+ |y (— )| = ga(m) — w1 (=) = P
. ;.x\.\.
After analogous reasoning with e in placéofyp,, it is con-
cinded that N

> f(tr)cnsnt,l\g{ o

€N
N¥- R
There is # corresponding {HeqEdeplibrary org.in

| Zr@shut <7,

LN\
the proof being simpliﬁ}ad in this case by tbe fact that the
monotone sequents g; (4) . |g2 (%)}, {sinné| vary in the
same semse. O\ '

For m =5 &% a still simpler calculation, based on the fact
that cos 2= (—1)", shows that | 2./ (%) cos nt,| < V. while
20 sﬁﬁ’ntr = 0, ‘

D\ éarding the special simplicity of the last observation,

.i.f;fi?* possible to state comprehensively o
~OLumna IV, 77 fAw) és a function of period 27, with limited

/variation over a period, its total variation being V, then

S r) cosaty, <V, | 2f)sinnt ST

whether m is odd (m == 2n+1) or cven (m = 2?%}'-
Let f(x) be of limited variation over a period, with total
variation ¥, and identically zero for & —7 < x< Bt
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[t has already been pointed out in substance that if e, is
A symbol deneting 1 or 0 according as m i3 odd or even,
Sp (x) satisfies the identity

1, 1
mSy, (x) = cos -n.rz,}‘(t-.,-) cot

> (£, — a) win i,

- —gin n,:r‘Zf(n) cot 1) (fr— ) cos nt,
+em t‘-ns-an:f(i,-) COSNF — e SN 920 Zf(t‘\,‘) sin 9 ¥, .\ﬁ\
For any value of & in («, 4), the product f(#)cotd(f <
is of limited variation, regarded as a function of ¢, ;}1’1{17 its
total variation does not exceed the product of 7 by, ‘(Ejilantit-y
depending only on . So the application of Lgwma IV to
exeh of the four sums i twn leads to thelw&)

CoroLLARY, If fla) is o function of perigh 2 with Lited -
variation, the total variation over « peghdd being V, and if
fe) vomishes identically for & — g 1’;\\'} = B+, then

www.dbl'aulibral'y.or:gf\iu
N () /“;(;.?4 in
Jor o a0 B, where (-*._.p(?ﬁfjm.;nd.? ouly ovr 3.

This Corollary in turno(pim ¥ be assoeiated with Corollary IL
of Theovem 1, in t-ll@:\li@ht of the discussion leading up to
Theorem Va in Chépter II. to yield

TueorEM TV. (f the function f(r). af period 2T, 98 von-
tinuous weth modilus of continuity o(8) for w-- g << o< B3
wheve oYY for 620, and of Timited variation over the
rest of s Period, then

f‘g.!. .

\ Sy — 8y () < ce(2a/n)logn

AN
\wﬂ”"“ S8 {fuis lavge enongh so that o(2ain) has

fe HMEAnng, « heing « constont which tlepenids nedher on ¥
ROT ol 9.

Lemma 1V is analogous to Theorem JII of Chapter 17, the
SUmS in the present lemma, multiptied by a quantity of the
order of 1/ to represent the length of the interval betweew
succossive points ¢, corresponding to the integrals in the
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earlier formulation, though as the length of the interval is
either exactly or approximately a/n, according as m is even
or 0dd, ‘the agreement does not extend to the numerical valnes
obtained for the constants ju the right-hand members of the
inequalities. Jt iz sufficiently woteworthy, however, that the
agreement should be as cloxe at it is, since for any particular
value of u the number of points used is unot large enough

to make it all evident o primd that the sums give close,

approximations to the values of the integrals, in view of the

presence of the factors cos nu, sit na under the sign <0t/
QO

integration. \
The analogy ean be cxtended to the conelusions. ot Cor-
ollary I of the theorem veferred to. The prog(is perhaps
most readily given by means of the Corollary dtself. Suppose
F@) has @ pth derivative with limited cariatbn. Then Fix)
is represented by a convergent Fourier :,erws it the Fourier

coefficients are denoted by o, A, ,\\\
AR dbrauhbl ary.org.in

Fla) = Z(cq,eo\ Joa: -+ B sin k).

The series may be used fw, fopr esent f(#) in evaluating the
sums X it} cos ni,, V\f (#,) sin nt,. Let m = 2n--1. The
expression 3 cos i r‘,\:oq nt, vanishes unless k—mn or k+n
is an 111teg1a1 mifltiple of 2n+1, that is, unless % has one
of the valuea/n+ 1, 3n+1, 3n+2, du-+2, brtd -
The value ghthe sum in each of these cases is (2n+1)/2
The ‘iuw{\ sinkt, cos nf, is zere in all cases. Consequently
Zf@} cos nty = [(@n-1)/2} (@ntansit-tamnrrt oozt o)
"qmn}arl)

2 £ty sin nty= [(20+1)72] (B, — A1+ Bantr— Bamiot )

Bat by the Corollary cited,
law < Viakrty), B < V/(mkrth,

if Vis the total variation of S Py So

N\



138 THE THEORY COF APPROXIMATION

| ent et @anat cants - - |

Vo1 1 1 , 1
= ?[nw T a0 T @t en T @e e +]

Vi . 1 o L1
< ?[ﬂf"*:l R SRR E Pt oy a (3 n)pri e ]
2v 1 i

C anrit [[ 3o gt ] ' . \\‘
the series in the last pair of brackets being convergedt for
» 21, and having incidentally, for p = 1, the upper bound
14-1/3*+1/5%+ ..., independent of p. A shni}z@h?equality
holds for the series of #'s, If m == 2n, (v

) ¢ 3

Zf(tr) cos nly = 20 (eat aﬂn:‘}\\‘f‘m :‘l" ),

and 27 f(¢) sin nt, — 0, Whethex g is odd or even, there-

fore, ) \/
| 20 f () cos ?’:‘;:T‘réc_lb?%l} I:?,T?:’TI’};SZFE Fysinnt.! < CV/in?,
where €' is an absolute copstant.

This result, supplemented by a type of argument which
hag been used a mwnber of times alveady, gives at once
certain informatién\with regard to the degree of convergence
of interpolating™sums 8, (). For example, if f(2) has a first
derivative whith is of limited variation over a period, and
if f(x) yabishes identically for @ —q < & < A-+%, then
’Sn(xkﬁgn' not exceed 4 constant multiple of 1/%2 for « == z = 8;
if f& has a first derivative whick is of limited variation
aver 2 period, and if £'(2) is continuous with modulus of

~(eontinuity w(8) for «—y < z< 8-L7, but not identically
/ constant over the interval, then |f(x) — Sp{(z)! can not exceed
& constant multiple of (1/n) w(27/n) logn for « < x < £
But such observations are of secondary interest; and it is no?
possible to pass over immediately to a proposition analogous
to Theorem IV of Chapter II, for the transition from a specified
interpolating sum S, (z) to one of higher order does not cou-
sist merely in the inetusion of additional terms directly subject
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to the inequalities that have been under discussion. For the
problem thus suggested a different procedure is required. The
detailed treatmenc will be limited to the next case in order.
that of a function having a first derivative of limited variation
over a period (or expressible as the integral of a function
of limited variation}, and not otherwise restricted.

The key to the discnssion of this ease js the faet that if
fl) s the integral of a function of lmited variation over

s &\
"N
an interval ¢ << o < b, the quotient [F(z) — F )]/ (= —g?};

(Qefined in any way, by the value f'(«-}-) or otherwisg Yor

z = a) is likewise of limited variation over the interyaly * Lot

F = i+
where ¢{z) - @ (2) — @a (). and eu}(k\g;: are  bounded
uon-decreasing funetions from a to b, {Iéf.

2 =

i ]' * Y
@, (x) = ey p{§5f$1~e(r'{§r.org.in

(i

gl N

Y

for g < m < b, while @, (1) ——{q):;(‘a'}_‘ and let a tunction @, ()

be similarly defined in termsSof ¢y (). Then, for » = r.
LN\ ’
Sl — LS . .
J{—(N = @ (x) - By(+).
,;.»;-\-\Qw

The asseriion T}:it[};rvgurd to the quotient on the lett will
be }erted 1f:it§.is shown that @, {z) wmd @,{x) arc nom-
decr.ea'mn_%j;\ﬁhe fact is vather obvious, and in formulating
& I)I'Ct{)’ LS Ul(‘.&l‘l‘!’{ sufficient to conxider one of the two
flm;t“lﬁ’\n\‘ For any valne of 7 a.

Ve

~

NS . A
O 0@ < [ @) ar < (e ) 4402,

Qi’( reason of the wmonotone eharacter of g,. so that
L) 22 g (u) = @, (a). Lot wr and &y, be any two values

ek that @-Zay sy < b Then

Ja" G (r) dar = (v — u) X,
-L, wi ) de = j 'I-J,-jx': =y ) Xy A+ (g — ) Vs,
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where
oile) < X< o) < X < gy {o).

So
f’sol(x)dw 2 @—a) Xi4+(@—a) X = (@—a) X,.

whence @, (xy) == X|; as X; = @, (x,), the desired conelusion
is established. Similarly, [F(x)— /B (b —2) is of-limit@
variation. O
Now let f(a) be of period 2, and (for simpligity of
statement) provided with a first derivative of limited variation
over a period. The function (x—a) cot § {zpsna)y defined

80 a8 to be continous for « = a, has a continubdbus derivative

i

interval. Hence the produect Ny

(L@ —Fa)l/ o)) Y cot S, (w—a)f
www.dbraulibrary en \in i
= [fla) — (@} cot 3 {x—a)
is of limited variation oxer (&, a - 77}, since this is true of each of
the expressions in braves. Simitarly, (x—a—27) cot {z—a)
is of limited variabibnTor a+ 7 << 2 < a+ 27; us fla—+ 27) —Fla).
the expression’\[/(x) — f(a)] /(a4 27 —2) is the same as
U@ —rf@¥em)/(a+2m— x), which is of limited variation
over (azhow! a-+2m); and so [A@)— f(a)] oot } (z—a) is of
limited ydriation over this interval also. In summary, and in
Sligé%y differentnotation, the expression [ 7(1)—f(@)] cot 3 (£ -2).

I8garded as a function of ¢, is of limited variation over any
santerval of length 24,

Let the interpolating sum for f{x) be expressed once more
in the form used in conneetion with the Corollary of Lemma IV.
The interpolating sum for a constant reproduces ‘the constant
identically; since f(z) is a constant with respect to the index
of summation =, the quantity given by the formula reduces
identically to mf(2), it £(%) is replaced by f(z) under theé
sign of summation, and :
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Ht [Su (&) —/ [35)]
= COS ML 2 £ () — f{)] cot ]2 (fy— x) sin n b,

—sinnx 3 [F{4) — flx)] eot ;— (tr—x) cos n i,

—+ e GOSN z Lf(f»,) ‘—f(.l‘})] cos 7 by
+ e sin nx 3 [F(t) —~flz)) sinntr. '\ﬁ\

But f()—f(x), as well as [£(&)—f()] cot 3 (E—a), igi:{Jix
limited variation with respect to ¢, and consequently Lemfitg' TV
is applicable 1o each of the sums on the right.ay Closer
inspection shows that the total variation in eacl¢ase is not
greater than a constant mmltiple of the tntai}féﬁatcion of
F(x) over a period. If this fact is incorporated in the
statement of the result, the conclusion iy be formulated as

Thgorey V. I7 f(z) is o function:qf-period 27 having o first
dérivative with limited -r.raréatio-n,‘tﬁ'{? Yotal variation of f (@)

over @ peviod being T, f’%*fw,dt;i:?u]ibrary.org.in
Sla)— &) < CV/n,

where O is an absolufeftanstant.

The correspondin analysis for the case of functions having
higher derivative$will not be carried through here. Tt may
be pointed ont{ however, as a first stage in the extensi?n,
that if flzpPlids 2 continuous non-decreasing second dgrivatwe
for a < ”?5”1’* then [f (x) —f(0)]/(@—a); constdered t0 have
the Vﬂ(‘éj {a) for x = a, has a non-decreasing first derivative
""f%f\ﬁle same interval. For 2 = &,

N
~ 23

~O" - d [.f.(e‘f-‘? :'_f_@l] — L,
\/ dax T 2 ,

as may be seen by ealculating the derivative from first
prineiples and applying the extended mean valune theorem 10

the yroeess, For »>-a,

d Jf&@rﬂﬁl] _ e—af @@l

(@—a’

fa &t

1 o _1_ H
= 5/ ® z25/"@
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the number & Iying between a énd 2. For z > a, furthermore,

& | fley—f (ﬂ)] _ o el (@) 2e—a)f @)L 2 f—Fa)]
dr*l r—a (@ — rz_)3

The monotone character of the first derivative thus becomes\\
apparent. It follows that if f(z) has a continuous seconel
derivative of limited variation, [f(z) — f(@))/{z — @ Shad

a first derivative of limited variation, and conuncction) \can be
made with the faects previously ascertained as, xta}ﬁmctmn\
satisfying the latter eondition. v \

6. Formula of interpolation analogous
to the Fejér rQeaﬁ

A considerable part of Chapter Hwas devoted to a dis-
enssion of the, @Mﬁ;@rs}rﬁ@m}t the partial sams of the
Fourier series. There is a Ldrsespondmw formula in the case
of interpolation, possessing’ ‘rﬂany analogous properties, with
the outstanding e‘{prtL({ll that i is 2of an arithmetic mecan
of a sequence of the™interpolating sums previously studied.
It is to he dehneﬁ\\dnd examined on its own merits, with
only incidental &aference to the conient of the earlier part of
the present &:’hzj.ﬁter.

Let »n bean arbitrary positive integer, and let ¢, = 2va/n.
for any(idfegral value of ». In comparison with the earlier
notaﬁ‘on, m I now to be taken equal to n, instead of 2n-1
Q“‘jﬂ the sign 3 will be understood to refer to summation

“yover n successive values of the index », when there is no

V indication fo the contrary; a separate symbol m is no longer

needed; and there is no oceasion to distinguish between odd
and even values of #.

Let f{z) be an arbitrary function of period 2. The infer-
polating formula in question is

sin®in(f z)
o () = Zf(v}m )
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with the understanding that each term is defined 1o as to he
contingous wherever jts denominator vanishes, For == ¢
one term of the sum reduces to f{f), namely that in which
¢ == g, or in which » differs from ¢ by an integral multiple of 4,
while each of the other terms becomes zero, and consequently

Gn (tqf) = f(t'?)'

So the interpolating property is apparent at the outset. , )
Tt is an almost immediate consequence of identities previoysly

emplioyed that . ~\
2] 2_1 7_;)/(5}1‘12 —1 -U) .".\\ ’
(bll’l 9 i 9 . ‘H:\s.

) v
=9 [% n-f (n—1)cos v (n—2) cos 2¢

N

N +'cos (n—1) z,] )

':\\.J
Hence, as a resuit of the subst-itui;iu\n: W ==t — 2,
{‘.~
6. (@) = i g - a1, COSX = s g:@s?w-F oo peacos(n—1)

dbkaulibrary .orgi )
+ sill\;;\f-llf:"gsnl?]uélxl‘la—rx PR sin(n —1)z,
with the coefficients -
Sl —1)
i ==‘s} "R P4 cosky,

N n?
! D — 2&2}@ 34 (t) sinkd,.

The gx’p%ession is a trigonometric sum, but of order about
twioe\,’i(s high as would be required merely for the purpose
of\Obtaining coincidence at # points.
WO IE £ = 1, all the coefficients reduce to zero except g,,
\:‘ while 3¢, — 1, so that in this case an(e) =1, or, it
(sin® nu)/ (sinu) is denoted by @),

sin® 3 nlty— ) = 2 (1/n%) @u [ é_ (h— x)J w1,

n?gin?} (4 — x)

Hence it follows further, inasmuch as ®a () is never negative,
that if f(z) is any function having M s an upper boung
for ity absolute value,

N\



144 THE THEORY OF APPROXIMATION

0@ = | 2@ 0] L )]
< S, 5 —a| = .

Like the arithmetic mean associated with the Fourier series,
the present e,(x) converges uniformly toward Flx), as
# becomes infinite, if f(z) is everywhere continuous, and: C
converges at points of continuity under more.general Iypotheses,
a8 t0 the behavior of the function elsewhere. Ina.smu(i:hfaé"’
the sums depend on the values of the function at isolated
points, however, it is necessary to iinpose somexr\éaﬁﬁctiun
on the values which it may take on point_b¥ point, not
merely to require that it be summable, orlinvother words
that it have a finite meen valne. N

Let f(#) be continmous for {=x, dand let [ f(f) < M
everywhere. By a device a]ready’.\ﬂséd on a namber of

. o .
occasions, the error. é’ﬁrg.f}ﬁ"{%?ra‘ffi%f]fg‘?ihe"pm“ed in the form

@)=/ 6) =20 B —r@i o] L 6—a).

Let € be an arbitrary positive quantity, and let § be a positive
number such that ' f(HSF(x) <4 for t—zi<d. Let the
sum in the right-hand member of the identity for o,(x)—f ()
be written in the form ¥’ + 3", where 3 denotes summation
over those valugs/of » for which #,— 2 differs from an integral
multiple of 2Dy less than d, and 3" stands for a summation
co\’el‘iﬂ&lié’i'emaining values of . In D, £} —F(x} < ke,
$0 tha{\\

\‘ 2w @ s 6 2|,
< W) e @y ()
< Zwmem o [Le—o| = L

In X, @[3 (tr— 2)] < 1/(sin®1 8), and ; £ () —f (@) < 2 M,
while the number of terms ean not exceed n, and consequently
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DL ) —S @] Py [ 12- (t— ar)] i = ?M;’(-n-sin’ —;— 6’) \

which is less than # as soon as @ is sofficiently large, This
establishes the faet of eomvergence. It is sufficient that »
surpass 4 hound depending only on 3/ and. &; it f(z) is eon-
tinnons evervwhere, d ean be chosen independently of =,
and the convergence is uniform. I f(z) is continuous for
«—g < << @44, withont Dbeing necessarily continuouss\

everywhere, it is possible to choose a 6 <77 which shall\, be,
valid for all values of = in the interval = < z < & \md
the convergence is uniform over the latter inbel'va],u]fiﬁally,
if f(a), instead of being merely continuous forx;c!\ y <
< B+, is identically zero there, and if x ig~given a value
belonging to the interval (a, 8), @a[3( < 2 < U(sin®y)
in all terms in which f{t) § 0, and A7
) < M HREEY).

The results may be Summa{{iﬁﬁg{lté‘att;ulibl'ar orgin .

Turorem VI [f.f(x) is anbolimded f waction of period 27,
o (1) converges toward f(@dﬁ every point at which flx) s
contimious. If f{x) isLoptinuons aerychere, the convergence
is uniform everywheven If f{x) s continuous for « —% < %
= B+y, the com&&nm i wiform for ¢ =% <8 I
Jlx) ds ddenticgly zero Jor e—1 <Lz <8 +a, ol
< C:g Min jma <z _4: 8. where A ds an wpper bound for
@), awid € is o constant depending only o

Fa h:é}“"dis;:ussion of the degree of convergence of af,.(x)
will e Timited to the case in which Flx) satisfies the condition

4

~O° Flan) — fla) & Lwe— o
\/Suppose first that this condition is satisfied everywhere. Then

1 1 e

(@) — f@) < (W) 2 b— 2 ‘Dn[‘z‘ (fv'*)]-
For any particmlar value of x, let tz Dbe that one of thte
nambers ¢, which is nearest to z, 0r 0D€ of the .twe neari;s ,
it z is equally distant from two of them, so that &~ (efn)

< @ £ te+(w/n). Let the qummation be thought of as
10



148 THE THEORY OF APPROXIMATION

extended specifically over the n values of » for which 2 — =«

< tr<<x+4 . The precise expressions for the extreme values

of » In terms of 2 and » will vary according to eircumstances:

they will be approximately B+ 1xn, and it is sufficient for

the. purposes of the present argument to note that they will

certainly be between R —n and B n, for any 2 >1.
For any value of «,

1 1 . .
@, (2 v) = 2 [? ntn—Deose+(n—2)cos 2o+ ..+ eosln—1g
=2 [—i nt+n—1+in—2)+... —f-lJ = n®, ,f...:
and hence ,:f\\ ’
i sin Ine 1 Rk Qg
—— | = |, [l < el
E ol R CE ST IERN
Furthermore, 0 < vfsind» < 7 for ;-a::,igJ%. Thronghont
this interval, consequently NS

sindy | sm%’-r{,;nu =

and at the same time (for v j:O)

S e N TP 1

vy, (2 z,) = !—wm sin® 5 nv < I?—I‘zs 1.

These relations ai‘é:\“fo be ‘ysed in connection with the
inequality for ‘o, (@—712)! in the second paragraph preceding.
It « is one of ¢he” numbers 4, o,(z) = (), and there is
no further guestion as to the magnitade of the error. If «
does not eefmcide with a t-, there are just two values of »
in the simmation for which 4 — x'<- 2 m/n. In the terms
of t};e:}um corresponding to these values of r it is sufficient
A0@pDly the relation |v @, (} o) < na, or | o @y [ (6 — 2]

‘n7. For the other points 4., in the order of increasing
distance from x on each side, the values of £ —«' are
suceessively greater than the numbers 2 wfn, 4nin, 6aln, -
and by the relation i¢! @, (3v) << 7% »| the corresponding
values of |4, — x| ®,[3 (f,— )] -are respectively less than
2, na/d, nal6, ..., Hence, as the sum invelves mnot
more than » points 4 on each side of x,

W
1 ' intuwn O ;
b‘i.‘Du(-Q— 'L‘) ﬂ@db-l‘ﬂ%%ﬁ'«wl‘in;—n v <L ow.n-l,

P -
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2 | . 1
: i’a'_“ -l-’l G)n 2_ (tr'_' ZI:)
It 2l +n aid L6+ -+ na/(2n)]
= [2+1 +-1'—|—i+."' -+ 1—]

[P

n

l%+f ’“"’] — nr(3-logn),

which for # 2> 2 does not exceed a constant multip]e’ﬁ
wlogn. This makes it possible to state ¢\J
Treores VI If flz) és a function of period 27 M&‘ifﬂ“&‘

everipichere the condition \
'\\
S lars) — fla)l = 4 Ty Lim \\
then, for all values of n = 2
S f ) — o (@) 4 (07 @ﬂ)ms
wheve O 45 an ubsolufe (‘on«mnf\\\'
The coneclusion may b c“’g’éﬁeﬁ‘hﬂ&ﬁmwﬂﬁﬂﬂ' ombination
with the last assertion of Z[‘]iteorem VI, to yield the
CoRDLLARY.. Ifj(:r) 3:; 1 bounded function of P"?wd 2m

||r’\

/

-

. satisfying the rondatam@

.f(}é) — fla) £ A
throughout t}w \nfemal e—ypsxs B + 5, then
:.\/ | F@) — o) < < (edlog nifn

9,

fol\‘?f' x < B, where ¢ is a conslant depending meither on &

”QI}\ o1 N,
) 4 out as a peculiarity of

n conclusion, it may be pointe
derivative vaniskes at eqch

of the points t; (See L. Fejér, Gottinger Nachrichten (1916)’
pp. 66-91, especialiy pp- g7-91), For in the identity

6a(z) = 2 (1/n%) fl&) Pn {‘_ (& — 9:)]

it is evident from the expression of @, in fractional form,

or can be verified by differentiating this expression, that
10+
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@[3 (& — «)] has a double root for 2 = ¢, if ¢, is not con-
gruent to ¢, modulo 27, while the representation of @, [3(tg—a)]
as a sum of cosines shows that it also has a vanishing
derivative for x =={,,

7. Polynomial interpolation

Ag was indicated in the opening paragraph of the chapter,
the methods that have been set forth are nmot adapted to the
study of the problem of polynomial interpolation with eqiialty
spaced points. That problem is analogous rather to thesthetry
of Taylor's series, whether treated by means of, Taylor's
theorem with the vemainder for reaj variables, mj\\\y Canchy's
theorem in the complex plane. A simple c]ga§g‘e’ of variable,
however, serves to carry over the formulad ! trigonometric
interpolation to a case of polynomjal\interpolation with
unequally spaced yoints distributed {1};1 certain way. Suppose
namely that a function f{z) is define@for —1 < x < 1. Then
Fieos 8) is a tunetiodbdefiibdarfprrgin values of 4. It is an
even function of 6, anq inspi;’cftion of the formulas defining
the eoefficients in the intqr{ifgl'ating sums 8, {8) and 6, (8} shows
at once that these sgms'im'ulve only cosines, and so may
be regarded as polydomials in cos 6. M x = cos 8, Sa{8)
and o, {#) may bg’\i}eﬁoted by Pnix) and m,(x) rospectively.
They are polynomials agrecing in value with £(z) for a set
of values ofzz Corresponding to equally spaced values of 4.
The polyngmial =, (x), unlike the interpolating polynomial of
minimgn;.. egree for equally spaced values of x, converges
in thQ\A??ise of every continuous function S x); its degree how-
exaris approximately twice as great as the number of points

(16* which coincidence is obtained. The expression P, (z), on

the other hand, iy an interpolating pelynomial of minimum
degree, and while it is not convergent for every continuous
funetion, it converges far move genevally than the correspond-
ing polynomial with equally spaced points. It is unneccssary
to ewnmerate the furtlier theorems on convergence and degree
of convergence which would be obtained by following out
the transformation of variable in detail.



CHAPTER V

INTRODUCTION TO THE GEOMETRY OF FUNCTION SPACE

1. The notions of distance and orthogonality O

In Chapter ITI, attention was directed to ‘the problem, of
the approximate representation of a given function by sueafis
of linear combinations of other given functions, acgpxﬁtﬁ:g 1o
the criterion of least squares. If f{z) is a given fanction
over an interval (g, b), and if p, (@), ps (@), 2505 Pm (%) are
m linearly independent functions over the ‘same interval, the
coefficients ¢,, -, 6m I an expressio:};\\.;

p @) = apl@)+an (:cgr%«\ -4 m pm ()

, rorvidBraulibrary.org.i
are to be determined so tﬂa‘,@f.d‘ auhibrary.org.in

b .

J; .[Q)"‘{x) —yg ()P dax
shall be a minimum.‘}\The value of the integral is taken as
a measure of the\discrepancy between the functions f(x}
and ¢ (x).

The problent is the same in principle as

of 19&5@@11’(51‘33 for the approximate solutio
equ?;@n;g_' Suppose there are n equations i m

that of the method
n of a set of linear
nnknowns,

X9
Z"\’::‘ ﬂllxl+a2lx2+"‘+a\mlﬂ:m:bl,
N w4 .
\" a121'1+022x2+-"+ﬂm2$mf ba,
"4

ATy - Qe T - + tmnm = ba.

The set of numbers By, Bey -r oy h.) may be regarded as col-

stituting a function &) = bx, In which the independent

variable k takes on only a finite number of values, the

integers from 1 to ». In the same Way, each of the sets
149
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(a1, ta, -+ -, ) may be regarded as a funetion (k). The +'s
then are the coefficients in a linear combination of these
funetions,

wy = wlk) = syl r a4 -0 b an (),

and are to be determined so that

it
; by -~ ) &
shall be as small as possible, The sum of squares thlagtinle
meagures the discrepancy hetween the dppmmmdtwn and the
fanetion approximated. \ N

The form of the sum suggesis a geometric 1\terpletatmn.
in which the functions b %), w(f) are 18[)18b€!1ted by points
in n-dimensional space, with cnmdlnatea@t Ioy <y ) and
(g, tyy - -+, ) vespectively, and X (g2 2 w)? s thc square
of fhe dl‘:tdl’i(‘{’ between these pmf{ts. By an extension of
the same 1dcaw\tfmtibwmﬂmm@s&g‘9{y) of the first paragraph
are thought of as c‘orrespundmg* te points in a space of
infinitely many dimensions, w:tth |[ Sla) —g(x)]*de as the
square of the distanece hbtween them. 'This definition of
distance iy the begml\m\ of a systematic geometry of func-
tion space. e\

Another hint ot\geﬁnwtnc analogy which is present from
the beginning. u}nmt»« in the recurring use of the term erthoy-
onal, two dalttions being called orthogonal to each other
over an, ‘l\ber\ -al when the integral of their product over the
mter\(l 1s zere. While it is worthy of some emphasis that
“Lth\%-onallt\ of the funetions whieh form the basis of the

:'&ppl oximation is a convenience rather thun a necessity, the

Totion of orthogonality is inseparably associated with the
least-square condition in another way.

Let the functions f(x), p, (z), - - -y P (2} be supposed con-
tinuous, for simplieity of illustration. (It would be sufficient
that they be integrable together with their squares, provided
it is assumed that the P’s are properly independent, in the
sense that every linear combination of them containing a non-
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vanishing coefficient is different from zero over a sef of positice
mensure; this condition is of course satisfied automatically if
they are linearly independent and continuous.) In erder that
try <y tm be the coefficients giving the least-square approxima-
tion, it is necessary and swfficient that f(x) — @ {x) be orthoy-
el to each- of the functions pi(x), or in other words ¢ 7«
necessary and sufficient that fl(x) — ¢(x} be orthogonal to

every linear combination of p. (), .-, bm (x). This can be .

verified algebraically, without 4 detailed examination of thea

\&\

necessary and sufficient conditions for a minimum in hﬁe

caleulus,
Let w(z) be an arbitrary linear combination of\(ﬁé P8
with at least onc non-vanishing coefﬁment The&

oW = @I S

is a linear combination of the p's, fog\:my ‘value of %, and
every linear combination different fwm 9 can be written in

this form by a suitable ch¥iée" 3?“9)’{1‘ Ty orgin

= [f(‘as)myn(m)] da,
T=J o) —o @] g x—f (Ifie)— 5 @] — by @) dr,

R :f [ftm]fgo.(m}]i,b(x)dm, S :J; [1,b(9:)]9dx:>0.

Then J= I%%(?R—ké’) It B4 0, & can be chosen so

as to maké J< I (for example by taking » = R/S), contrarv

to the s@posmon that ¢ is the minimizing fanction, whﬂe if
“*Q J=T+h25>>1T for every 1 4 0,

\/ The comhtmnsf[f(x)— @) pl@)de =0,¢2-1,2,.... m
are equivalent to the m hnear equatmnq

J_;Zl (,'J'L ﬁj(x) (@) d= :J: F@) pi(x) da

for determining the m ¢'s. It has been shown that these
equations must be satisfied if the least-square problem is to
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be solved, and that the problem will be solved if the equations
are satisfied. For the moment there is still a question whether
the equations have a solution. The answer is immediate,
however; the left-hand members are independent, of the fune-
tion f(x), the lcast-square problem obviously has the unique
solution ¢, = ¢y = ... = ¢y == 0 in the particular casé
S{z) = 0, and consequently the determinant of the coefficients,
must be different from zero. If the p’s were not lineafljn
independent, the problem of approximation could still be solved
in terms of a linearly independent subset of them, and thig’ivoﬁld
be at the same time a solution in terms of the original set
of p’s, but the solution in terms of the latterﬁeb}as ‘a whole
would not be unique, o\

Similar reasoning is applicable to the problef of the second
paragraph of the chapter. Integrals are™Mo be replaced by
sums throughout, and in particular th Qpio‘perty of orthogonality
of two sets of numbers i expresset\by the vanishing of the
sum of the DI'QMGLﬂw%utmsyéngiﬁig numbers of the two
sets, The hypothesis of linear\independence of the »'s corre-
sponds to the condition that the matrix of the coefficients ax
be of rank m. The copdition of orthogonality characterizing
the least-square solutioh takes the form that the sef of
residuals be— 10, drtlogonal to each of the m sets of wumbers ug:

£ N i
\<& I;: (b — ) @ = 0.

N7 . i
The ith-equation of this set may be constructed by multi-
plyingedch of the given equations by the corresponding co-

etfxt;’ie t of z;, and adding the equations thus obtained., Written
. \c"ﬁ:t at length, the new equations have the form

4 R B 7
(;1 Qi ftuc) a4+ (2 aik &2;;) s+ (Z i amk) T
= =1 k=1

[
= 2 a b, t=1,2, 000 B
k=1

They are the well-known “normal equations” for the sohution
of the problem of least-square adjustment.



V. GEOMETRY OF FUNCTION SPACE 153

In certain cases the necessary condition of orthogonality
can readily be translated into another familiar form. Consider
once more the case of functions of a continuous variable z.
Let f(x) and o{x) be given functions for a < x < b, for
simplicity continuous, and let ¢(x) be nom-negative and not
identically zero over the interval, and let Py (x) be the poly-
nomial of the nth degree which minimizes the integral

[/ et L) — PP .

Then the remainder f(z) — Pa(@}, if not identically zero uHere

ever o (@) § 0, must change sign af least n + 1 times in he‘é‘gaier-
val (2, b). If [e @]V? is denoted by g(z), the integral to be
minimized is- the same as J.[g(x) ¥ (x)-q(a:)P,s(:S]’ dz, and
the problem is that of approximating ¢ () @ by a finear
combination of the functions g(x), xg (@&, z"¢{x). By
the general proposition obtained aboydy, it is necessary that
g (@) f (@) — g (#) Py (z) be orthogonal” to every linear com-
bination of the functions ‘E\yﬁf(&lf,‘%’ﬁibﬁ?‘@éﬁﬁ‘ﬁ%rds, orthog-
onal to ¢ {x) Qu (), if @ (z) ¥ an arbitrary polynomial of
the mth degree; in S)rmpt)\ls;'since [¢ @] = e @),

b AN _
L ¢ () [AGY — Pr @) Qo) dz == O

It fiz) —Pn (x).l{;id not more than n changes of sign, it

the same

would be possible to construct a Qa(z) having
Py (5'3)4: 0,

sign as f(#)>~ P, (#) at all points where Jf@—

and thi\would make the integral positive, unless ¢lx)=0

whergver f{z) — Pa(x) £ 0. The condition that P»{x) be
‘“1011 us to give the remainder the requisite pumber of changes
\'f;ﬁ Sign is of course not sufficient for the solution of t-he.

east-square problem, since it is satisfied by any polynom'la.l
differing sufficiently little from the minfmizing polynomial.
A corresponding formulation is possible in the case uf.ap—
proximation by trigonometric sums, With or without a weight
function, .

The least-square problem, in general as well as 1l the
special cases discussed in the preceding paragraph, is that
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of choosing from a given linear family of functions the partic-
ular one which is closest to another given function, according
to the measure of discrepancy speeified. The geometrie inter-
pretation that has been suggested gains in clearness if each
function, instead of being represented merely by a point in
a space of an appropriate number of dimensions, is also
represented alternatively by the vector from the origin to
.the point in question. The linear family of functions then\\
corresponds to a linear spread in the geometric picture, and
the function of closest approximation corrcsponds to the peiiit
of this spread whose distance from the point representing
the function to be approximated iz as small f_lS’pt{)ESi'lﬂe; the
residual function f{x} — ¢ (z) (or b{k) — w(Z)hean be regarded
as the veetor from ¢ (x) to Fiz) (or from ) to b (%); and
the property of “orthogonality” charactpriéiﬁg It is associated
with the faet that the shortest disj:gnqe"fmm a plane spread
to & point outside it is perpendicula®yto the spread. The geo-
metrie terminology thilsrauwkihires grlitional plausibility.

2. The general hotion of angle;

geometric interpretation of coefficients of correlation

An obvious furthgr'}tep is to proceed from the notion of
orthogonality to Bj‘g&'\ﬁéral notion of angle in fmnction space.
As will be seel presently, the definition of angle is already
implicit in $hal of distance, if the frame of Euclidean geo-
metry is/%0- he fitted consistently to funetional relations,
thougl&fj;é’ question as to the possibility of carrying the idea
thioul systematically and without danger of internal contra-
dictton still calls for some elucidation.

\ It will be well first to adopt a common netation for dealing
‘simultaneously with fanctions of a continuoms variable and
functions of a discrete subseript. If « (), y (9 are continnous
functions of ¢ for « <t b, let

. b
(- y) :_J; z By {t) dt.

I3, @y -+, %y 41, Yoy - -+, ym aTE tivo functions of an index &
which ranges from 1 to %, let
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H
(- y) ZIZL:UR Y -
k=

The quantity {z.y) is the inner or scalar product of the two
functional veetors. In partienlar, (z.%) = in or’ f 2 dt,
etc. The condition for orthogonality of = and ¥ is that
(z-y) = 0. A third ease worthy of explicit mention is that
of infinite sequences a, Xz, -3 Y1, Yo, - -, SUCH that 2o
and Xy} are convergent. The interpretation then is that A\

W
o

(xy ::Zxkyk. i“}
k=1 \ o

Al three are of course isolated particular Case&;ﬁi%ﬂ the
point of view of general analysis. . ,\

Let 2(f), y (1), ov x(k), y(k), be two fu_ncti{)ns’ represented
by the points P, ( respectively, and l,e‘t.\\t'f be the origit,
corresponding to a funetion which ‘(ﬂ’l"ﬁﬁhég identically. By
the convention already adopted, the ifies of the triangle OFQ
ave W \a\r_d:bj:‘:%gyhbl'ary.ot'g.m
OPpt = (x . x)g:’:"OQs = (y * y)}
P@E=(y—- 2= (v-9)— 2@+ ea

'\

1t the angle POQd Qigloted by 8, application of the law
of cosines to the, tridngle gives

R 0P OQ*—20P-0Qcos

whence gfg;}d‘- O cos 8 = 2(z -, and

A
SO N 1) ) —
" :"\?.;, cos § = (.’I/" x)]_ﬂ (y' y)lﬂ
) When the independent variable is & = 1,2, % e
formula hecomes b

2 Ly Y

i e
cos & - (2 a.i)lfa (nyc 1

fundamental formula in

This is recognized immediately a8 & .
7 s eoef ficient of corrélation

the theory of statistics. It i the
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betiween the wariables x owmd y, if these have been reduced
to the form of deviations from their respective arithmetic
means, or, in other words, if Xuax = Xy = 0. Subsequent
pages will show that the geometry of function space throws
much light on the structure of more complicated formulas of
correlation,

It becomes important to inquire more closely as to the
logical basis for the identification of analysis and geometry,
The cssentials of such a basis are implicit in the considerations
leading wp to the proof of Theorem ITT in Chapter 1 Mo
repeat in the present notation what is needed for the purpose
in hand, restricting attention at first to a two-dimensiona)
spread, let x, y be any two functions which.&r'e linearly in- -
dependent over one of the ranges speeified iivthe third para-
graph preceding (or over some other .anropriate range); if
the range is an interval, let it be supposed for convenience
that the functions are continuous et

. \.ﬂrw.dbl'aulibrtal;}‘{_a;i:g_ill (8. ?,‘)
N N A

It follows inxmediate]yfféﬂthis definition that (& .#,) == 0.
By the hypothesis .eiz\l\mear independence, furthermore, it js
certain that #; i& ‘0ot identically zero. If

§\=“ /(& ), 7 == /(e g M
the %1,:3};10118 &, o are orthogonal to each other: (§.4) = 0;
and/they also satisfy the condition that (£.8) == (g.9) = 1.
They are linear combinations of z and ¢, and it is seen at

:Nﬁﬂée that the determinant of the coefficients is different from

w

zero, so that x and y conversely can be expressed as linear
combinations of & and y, '

The functions = and y being given, fet & and 7 now be
any pair of functions such that « and y are linearly expressible
in terms of & and %, and such that

Ep) =0, E.H=@-9n=1.



N

\ 3

X
2

V. GEOMETRY OF FUNCTION SPACE 157

It has been shown that such fanetions £, 5 can be constrncted.
There are infinitely many pairs satisfying the requirements;
the original &, 7 can be replaced by e, &8y, as§-+Ber,
it @, 8, s, 8y ure any constants such that

a1“2+3132 = 0, “§+ﬂ§ = a§+ﬁ'§ = 1,

Furthermore, the requirements can be satisfied even if = and g
are not linearly independent; it suifices then to expmsg,x,\y
in terms of two linearly independent functions w, ¥, &nadto
construct functions &,  as above with x, and y}*iu" place

of x and y. N
In terms of .a chosen pair of norma.!i%’aﬁ‘ orthogonat

functions £, 4, et v
e = aE+bn, y=BHETh
(o 2= a2+ 8, oy =+
(g — ) - (v — Dvrdlabrambiar org b

Then

If the functions x, y 'a;n;zl thought of as corresponding to the
points P, Q, with the qob’-ﬂia‘ﬂates (@, by) and (as, be) respectively
i a rectengular cgi&\diﬂate system, while O the origin, the
quantities (x-a ¢ lg-y), and (y— ) (y—x)) are the spiares
of the a!e'stqncés OP, 0@, and P4. The cosine of the
angle POQyis’

O maetbb @y
AT @ - ey i
J@”_&enemﬂy, i

\‘:u.":: hadp oy =45+ Bin,

v = Iyt py = As ¥4 Det

and i B, S are

are wny linear combinations of x and ¥,
then (w-1), (v-8),

the corvesponding points (Ai, Bi), (s, Bs),
and {{v—u). (v — W) are the squares of the distances OR, 08,

and RS, and the quantity (u-v) & the sc..ala-r product of tfsf?
vestors OR, 0S. Every linear combination lx-l—ﬂ.e_»y corre-
ates (A a4 25 ib,+uba);

sponds to a definite point with cotrdin dence
if z and y are linearly independent, 2 gne-to-one correSponaelet:
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is established between functions linearly dependent on them
and the points of a plane, in such a way that there is an
actnal identity between the measures of distance and angle
and the gquantities which were associated with them originally
hy analogy. So far, moreover, therc is o need of a1y space
of mere than two dimensions,

The correspondence being once established, the analytienl
relations expressing geometric facts are implied with ogicgh
conclugiveness by the geometric facts themselves. Cm}.si(%r
for example the problem of determining a constant 16, nibi-
mize ({y — 4) - (y —2z)), when = and y ave givew) If «
and y are interpreted as statistical variables, @frycsenting
deviations from the respective arithmetie n e’aﬁs, 4 is the
coefficient of regression of ¥ on #. The ROINLS corresponding
to = and y being /* and @, as before, ‘the function . is
represented by a point M on the line ()70" and y — Lz corre-
sponds to the vector M@, in the}«@éﬁnitc sense that when
y— iz is expresspdpitunbiisedrdinubination of & and 4.
the eoefficients of § and areSthe conponents of the vector.
It is clear from the geometiit figure not only that 3/Q) must
be perpendicular to GF, ok 'in other words that y — Az must
be orthogonal to x,Unt alse that the valne of A which
accomplishes the plrpose is given by

NAOP = OM == Of)cos 8,

) 0Q ey zey) _ =y

9z G DR gt T )
whe@;’is the angle POQ, and furthermore that the minimum
Va}@ f {(y —Aax)-(y —Lz) is

Kas =

:jﬁfé}g = (0Qsin 6)* == (y.y) (1 — cos?g) = (- ) (1— "),

" if cos 4, interpreted as a coefficient of correlation, is denoted

by ».

For the geometry of three {linearly independent) functions
7y Ys 20 Tet &, g, & 5 be defined as before, and let

s = (-512) . _("C"L'z) = =

=z — gy LT E) = ) N
°t ¢ & ({-:151) " (731"’,"1) ’ s 5”{@1 ;l)
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Then £, 4, & satisty the conditions
E=ED==(-0=0. EH=(.p=C.0=1,

and x, y, z are linearly expressible in terms of them. There
are infinitely many sets of functions satisfying these same
conditions, and serving equally well for the represcntation
of 2, 9, 7, any such set being expressible in terms of the
particular set &, 5, £ by means of the coefficients of an orthog-
onal linear- transtormation in three variables. Any linear

N

eombination y = A b wy + vz can be expressed in the forfi)y

A§+ By -+ L, and can thus be put in correspondence¥ith

A powmnt (4, 2, €1, the square of whose distance dm the
origin iy the quantity (w.n) = 4*+ B % M)W and
iare two suel Jincar combinations, corresponding t6\the points P
and @, the cosine of the angle POQ is (u- v)f[(i(- IO
The representation of functions by péinis or vectors is
particalarly eonvenient for the visualization of coefficients
of partial aud double cmm,l,a&.jggmgjég;g’l,&ggé Igg}}g t!ll“ee given
furetions, corresponding to pointg Fa, A in three-dimensional
spaee, 1fx, g, # are sets of dqx-"iétions from arithmetic means,
80 that the statistical termiiblogy is appropriate, the ce-
efficient of partial corrglation between » and y, Wwhen 2 I8
held fast, i{s the coefficfent of correlation between x ~ £z and
¥-—pz, where i aﬁd\;}- are the regression coefficients of x
on z and of y,gurs respectively. The function :r:_—‘Zz I3
A linear combinhtion of = and ¢, orthogonal to z; 1S geo-
metric counf@rpart is a veetor in the plane POR, perpendicular
to (}R.\Si’ﬁ].ilarly, y— g is represented by a vector per-
Pelldie.lﬂ}r to OR, and lying in the plane QOR. The angie
hefseen these: vectors measures the dihedral angle f“m}ed
By the two planes. So the coefficient of partial correlation
\m question is the cosine of the dihedral angle. Let B, @i,
R, be the points in whieh the rays OP, 0@, O pierce thre
unit sphere ahont the origin as center. In the spherical triangle
P, Q, R, let «, B, y be the measures of the anglefa P @
R, respectively, and let a, b, ¢ be the sides opposite these
angles. Let 7, 7, 7ss Tespectively be the ordinary cor-
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relation coefficients of x and ¥, = and 2, and y and 2; let
rum.e be the partial correlation coefficient which has just been
discussed, and let vy and 5y be the other coefficients of
partial correlation. It has been seen that rua== cosy. In
the same way, 5.2 — €08 8, re.1 = €08 «, While #;; == eos ¢,
tyg = 08 b, reyy = cos a. By the law of cosines,

-gos c—cosacos b
sin ¢ sin b

cos p = ,

which means that ) ¢\

Fig — 13 T'2g

T = T T o .‘n";
12.3 [(1 o Ti?,) (1 _,rgs) 12 :’\\ \

This is the standard formula crpressing a coqfﬁcéz}zé'af partial .
correlation in terms of ordinary correlation co@fﬁcients. The eo-
sefficients r1y.2, ray.1 0f course have correspb}ming expressions,
The inverse formulas N

riz.et s Pedy

rig == , -
”www,ﬁqr_auk%{grgg{;g.% OpE

ete., are similarly obtained'fﬁ;{m’the polar triangle,
For the definition of pne'éf the coeffieients of double cor-
" relation, parameters ]..,.p\\dre to be determined so as to mini-
mize the guantity¢{(r— Ay — p2)- (z— Ay —p2)), or in
other words to give the least-square approximation of x by
means of a lin€dy combination of y and z. This requires that
:e'-—?-y—gx{be orthogonal to both # and 7; geometrically,
the poQt;'}Lf “representing the combination Ay —+ pz is the foot
of theyerpendicular from P on the plane QOR. Then ry.0s,
the ‘eoefficient of double correlation between x and the pair
~of yariables y and z, is the coefficient of simple correlation
\Jetween x and Ay~ pz, the cosine of the angle MOP between
OP and the plane QOR. Let this angle be denoted by 2. It
is measured by the arc P, &, if S, is the foot of the altitude
from P, to the side @; B, in the spherieal triangle. Hence %
may be calculated as a side of the right triangle B, S: P,

by the formula
gin 7; = sin b sin 7.
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By substitution from the relations
sin®h = 1—o3,,
Si‘[]gy = 1"—‘??2 3 P 1—n -“—ng‘—?‘gs-i-??'m?‘uf‘ .
- =y 0~
it is found that

O+ — 2y 1y r)”®
+ — . — -— gin? 112 o
1.8 = 08 h = (1~ sin® %) (I—ri B

There are corresponding formulas for the other double eor-,¢ b\
relation cofficients »3.12 and rgae. O N
The same figure may be used to obtain formulas for.the
coefficients 2 and g, the partial regression coefficiénts “of
z on y and z. Let lines be drawn through My p}rallel_ to
OR and 0¢, meeting 0Q and OR at K and L veSpectively,
to form a parallelogram O K ML. The vet;t(iﬁ"OK and O L,
coustituting a resolution of 0 into components collinear
with 0Q and O R, represent. separately, the terms Ay and g2
On ‘the surface of the sphere;latbtligligrey e ARd & @ be
denoted by d and e, so that d.jneasures the angle LOXM,
while ¢ measures the angle MQK and its equal OM L. (The
formulation is adapted thyeughout to the case in Whiqg-"t_he
point M falls within th€ ahgle GOR, so that & is interior
to the arc Q, B,.) Jnfhe plane triangle LOM, having two
of its angles equal:io d and e respectively, the third angle,
at L, is the supplément of d+e. But the arcs d a,n.de on
the sphere make up the side a of the original spherical triangle.

So the laﬁ{\:@f sines in the plane triangle gives

R\ ] .
AN OL _ sine L mae
OM  sin(dte s &.

\‘;

In the right spherical triangle P; S8 @, on the othor hnd,

. gin ¢ ¢08 8
SMme — - COSh H
80 that '
OMsinceosf
OL = ~Gracosh '
"1
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while 0L — ¢ -OR, and OM — OPeosh. Henee
_ 0L _ OPsine c0s
#= OF ~ ORsna ’

or with the use of a conventional notation, presently to be
explained at greater length, for regression  coefficients and
standard errors of estimate, as well as that already nsed for

coeffictents of correlation, .. "
N\
ba. = Az 13,2 ¢
. P 18,2- O
Similarly, QO
Bura = A OPsind . .8 ’ A\
nes — ety — = T 1ol 3
OQsing Y X x”\\

The results of the preceding paragraph cad b? obtained by
a possibly less straightforward but more exclusively geometrical
method, making no use of the spherical $fidingte or of spherical
trigonometry as such. Let the lettes)0, P, @, B, M, K, L
have the same signification as beéfore. The letters a, b, c.
«, 8, v refain; fhebuljreving §d@anings as measures of the
face angles and dihedral anglesiof the trihedral angle O-PQR.
Let H be the foot of the-perpendicular from M on 0@, and
J the foot of the perpendienlar from R on 0@, The triangles
KMH and ORJ ix{%e plane QO R are similar, since KM
is parallel to 0B (having been so constructed), M H is parallel
to RJ (both Being perpendicular to 0Q), and KH and OJ
are collingdr’l’ Furthermore, XM and O L are opposite sides
of a pa}yéﬂl&logram. So

" \\\ oL KM _ MH

\ OR ~ OR _ RJ"

~But the length of RJ, the perpendicular from & on 0Q, 18

@ Rsina. Also, PH is perpendicular to O, since MP, being
perpendicular to the plane QOR, is perpendicular to the
line 0Q, and 0Q, being perpendicular to MP and MH, is
perpendicular to their plane and to the line PH in that plane;
hence M H P is the measure of the dihedral angle 8, so that
MH = HPcos 8 (as PMH is a right angle), while HP
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— QPsinc, making MH = OPsinccos 8. The resulting
expression for g is the same as before.

The preceding caleulations are not restricted in substance
to the case of statistical variables, but can be formulated
without the terminology of correlation, and are then applicable
to any functions x, y, z coming under the original hypotheses.
It is to be emphasized also that for the time being no use . {°
has been made of space of more than three dimensions: the,

4

geometry is the actual geometry of experience. R

~

3. Coefficients of correlation ¢ ‘f‘;'
in an arbitrary number of variables)

For dealing with relations of higher compleXiby it will be
convenient to modify the notation somewhaf: When there
are m functions to be considered, let ihém be denoted by
¥y, @gy -+, Tm» The case of primary\i;m,erest will be that of
statistical variables, measured from Anjarithmetic mean in ench
case; i e., 2; will stand_for a sebof numbers xq, i, -+ i
subject to’ the condiﬁonﬁﬁ‘{gﬁﬁﬂ;ﬁat ¥ UExl - 0. Apart
from technical notation and terminology, however, the work
will be valid for funqéons of any of the types previously

considered. As anf{additional item of notation, o will
be abbreviatedyto h‘x))’.

The reductién of general coefficients of correlntion and
coefficients bf‘regression to expressions in terms of coefficients
of 10Wer@“ﬂer depends on the following fundamental prop-
ositigni’ o

Ll dy, o, A e defermined so ns lo nuninnze

:\ ) ((3:1 —Adpy—— e T iy -Tm})’-

) Y

4
and with these vnlues of the Xs, let

W o= ;I?l—'—lgﬂ'g— o= Ay T
Let pgy ooy po ad Vg, -0 2y Vm be determined o as lo uummu:
(o, —ps2a— o — Bm m))? and {ry— raa— 7 Yu St
and lel

i | e A L
P =g —py g o Hm Ty T Tl B
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Fet A be determined so as to minimize (9 — AYY)E,  Then

The proof depends on the still more fundamental fact, imme-
diately deducible from the definition of orthogonality, that
if one function is orthogonal lo each of two other functions,
it 15 orthegonal fo every linear combinafion of them.

It is at once apparent from the definitions of ¢ and ¥ that\\"
g — 4 is a linear combination of the x's, of the same form
as o, the coefficient of » being unity in each ca.sggftlie
question at issue is that of the identity of the rgm%ﬁﬁing
eoefficients. :.\'\”“

By a theorem diseussed early in the chapter,‘a“(necessary
and) sufficient condition charaeterizing the “¢epfficients in w
is that e be orthogonal to each of the f;ch.tions Hpy o vy Eme

By the same theovem, ¢ is orthogomal to each of the
fonctions @y, <+, @, and ¢ is likgwise orthogonal to each
of these functions,. $eesliydsythogonal to ¢ and to ¢,
it is orthogonal to the combiné;ti'o‘n ¢ —-A. The same is
frue of my, -, zw. In ophéj"words, g — .4y s orthogonal
to each af the functions s, <+, om.

By one more application of the theovem, ¢—.f3 is
orthogonal to w4 {Bat z, can be expressed in the form
% 2 P+t +vpam.  Consequently, being orthogonal
10 W, 2y - @ ¢ — AW o8 orthogonal also to 2.

The idepfity of ¢ — .4 with ¢ is thus established.

For_m<&'8, the proposition is equivalent to a relation of
perpondicidars which is important in deriving the formulas
Uf,jf@lerical trigonometry: if OF, 0@, OR are three rays

~JSsuing from 0, it ¥ is the foot of the perpendicular from P
\,/on the line O R, if a line is drawn through N in the plane QOR
perpendienlar to O R, and if M is the foot of the perpendicular
from P on this line, then 3 Pis perpendicular to the plane QO L.
This figure yields the equation sin/ =- sinb siny, which was
used in obtaining the formula for a coefficient of double
Forl‘elatiun. Essentially the same configuration appeared also

in the discussion of partial regression coefficients.

3
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For the statistical application with an axbitrary value of m
a somewhat elaborate notation is appropriate. Let the func-
tion w, as originally defined by the formula or—2sxe~—++ —hpm
according to the least-square criterion, be denoted by 21.s...m.
It may be spoken of as the residual of xy with respect fo
X3, Xa, -+ -y Zm. (The order of the snbseripts 2, 3, .
among themselves is clearly immaterial.) Similarly, ¢ and 1,0,\\“
the residuals of @ and of x with respeet to @, ---, 2w,
are to be denoted by Zys.m and Zys..m. The standdrd
deviation oy of any one of the original vanables ax 18, defined
by the equation of = ((2;))*/n. (The presen\be of the -
denominator » is a mere matter of definition,.as"far as the
present discussion is concerned, since the eqﬁaﬁons will in-
volve only ratios of standard deviations;> except for the
statistical interpretation, the (positiye)square root of ((2))*
itself. may be used in place of op) The correspondingly
defined standard deviation of such a'residual as ay.03..m, the
standard error of estéma\é@”qfdiéf‘aﬁﬂiheﬁm.oqﬁ.mp, cony B, 18
denoted hy Gro...m. 'Thé, partial regression coefficients
Ao, da, «-., m are reppesented by bi2.sa...m, D1s.2emy -0y
bim.2s..m—1. The ﬁrst\\ubscrlpt of each of the b's is that
of the vanable dpproximated, the second is that of the
barticular variable to which the coefficient in question is
attached in the’regression formula, and the other subscripts,
the order of\which among themselves is withont significance,
are t.h s¢\of the remaining variables. In the same way,
Mgy - &5 m are to be replaced BY big.a.comy -y bimse.n—1,

and va,-- Vi DY bas.g...my -+, ban.5...m—1. The coefficient
"Of correlatlon between and 1,b, or, in the present notation,
between @1.9...n aBd Zog..m, i8S the coefficient of partial

correlation between x, and Xz when Xs, -+, Tm are held fast,
and is represented by rizs..

In the new notation, the general proposition about the
ldentlty of the functions previousiy called » and ¢ — AP
asserts that xy.03...., is the same as the residual of &1 5.,
with respeet t0 ws.a...n. It is important to bear in mind
however that its essential content is independent of the
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number of variables and their individnal designations, and
this essential content is more adequately though less coneisely
expressed by saying:

The residunl of o given function with respect fo o set af fumc-
tions may be oblained by calculuting successively the vesiduals
of the given function and of any chosen funclion of the sel
with respect to the remaining functions of the sel, and then .
taking the vesidual of the former of these residuals with feejjec‘ﬁ\\
to the latter. _ ¢\

An ealier paragraph contained a derivation of the value
of the simple regression coefficient minimizing the expiession
((y—1z). (g — Az)). The formula of that pa.naﬁg)}\pﬁ which
reads $ ,\

_ (pp® (- y) ’

T e o g™
becomes in the present notation by, = \’(}rgf ¢,)7s. Interchange
of the variables gives b, = {o'lhrs) %su; the simple coefficient
of correlation is mymmletmclablmmtteg two variables, so- that
T3y = g, While Dy and b~ sire different. Inecidentally it
appears’ that », == (b bm) 2, '

Corresponding formulas® for partial regression coefficients
can be obtained immediately. It is apparemt on inspection
that while the, coefficients of a5, -.-, @, in the function
TL5...m == 5, a.e expressed in the fmm g — A, are com-
binations of* the w's and the +'s, the coefficient ks = bias...m 05
merely A But this .4 is the simple coefficient of regression
of ¢ ’w\lt,h 1espeet to ¥, and as such is expressible in terms
of the ‘standard deviations of  and ¥ and the correlation
between them. The standard deviations of ¢ and ¥ are
Nt AN Gy, .m Trespectively, and their coefficient of cor-

relation is 1w 5...0. Consequently
b _ %g.m

12,8, == 13,2, .om
92,3 .m

By interchange of subscripts—in other words, by consideration
of the coefficient of regression of wu.s...,, With respect to
Z1p...v—it I3 found that



the definition of the correlation coefficient is symmetrical
with respect to the first two subscripts. Combination of the
equations for the »'s gives

r12.8...m — (512,3--4:1, 521,3mm)”2- ~

- In the earlier paragraph to which reference was made above
the minimum of ((y —2x)- (y —ix)) was evaluated ju the’
form (y-y) (1 —r%). In the new notation this result I ex-
pressed Dy the equation of, = of (1'—73,). The cg@esﬁending
equation with subscripts reversed is o7 , == of (l~\z“{2} -Applied
10 the standard deviation of o =9 — AYH regarded as the
residual of ¢ with respeet to ¥, it bgqa:.@es

2 i g2 e .
Gl_gq,..m - 01.3--<m (1‘*\‘\’?;2377;)
: L4

Here again it is important to_res ”_'nize the essential content
af the formula, as distin‘ét\fiféiiga"fﬁlojﬁrﬂfé’ Sfdpion in which
it is expressed. Writtenﬂ;it&h successively for cases of m
creasing complexity, w@h a particular choice as to the dis-
position of snbscx"ipk@:}ach time, it yields

N D 6, = Jf(l—ﬁg)s

ON a8 o gt (1— 72
,\..”12,23 = 0™ %3 (1= 1% 2
Mo g2 = g2, (172, )
«xi\ O o = Tl ™ 0'1-'23(1 ?‘14_23},
) ‘X; - m2 — g2 1—"'?'2 ,1)?
klzam = 0% ngg...m-1 01.23‘--:?»-—1( .28

““and by combination of all these equations

' 4 Y ‘2
L ogeom =0} (1—-ri2) (l——&’fs.z)(l-‘?‘izﬂ) e (1= )

1.2,
on for eertain residuals,

S jated notati
Reverting to an abbrevi ly employed, let

but with a modification of that previeus

Wy S Xy aamy o 02T DRBem
. R o W
G1 == Gy Fr T dpdemy PR
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By the fundamental theorem about residnals, ®, may be re-

garded as the residual of ¢, with respect to ¢y, and m, is

the rvesidual of g, with respect to ¢;. Hence the coefficient

of corvelation between w, ond oy is the coefficient of partial

correlation between ¢, and 9, when gy is held Just, and is

expressed in terms of the simple eorrelations between g, ¢,
and gy by the formuia previously obtained in the diseussion’
of correlations ameng three variables. If the correlation

between o and @, is denoted for the moment simpl}g"ﬁy 7,

and if the correlations hetween ¢, and gs, 1, and gy -and ¢o

and g, ave called respectively riz, »i; and riy, thew ’

L
N Fla—=riars \4

T ja—a— ?éé)}\\z

But from the point of view of iﬁl‘e% dependence of thege
quantities on @y, i, -+, 2, o\ ¢

, _ , www,dbraulihi‘?ﬁ'&(.org.in ,
P = rass...m. Fle = '?'12.4--;-@«.?'13 = 7184 s Y23 = Tou.4. .m,

and consequently ~

. _.:\(}2.4---?11,_"?'13.4...m3'23.4---m

M=, yasE, e

Fioad...m

By the last eQiation any partial correlation coefficient can
be calculqt{i'm terms of correlation coefficients of lower
order, that is to say, eorrelation coefficients involving a smaller
number of variables, and so ultimately in terms of ordinary
correlation coefficients, : '
~Llet the partial regression cosfficients of a; with respect
NAD @, ws, -, @, be denoted once more by 2, %, -+, Am,
and let © = 4, Z2FAs 2 oo FAm . The coefficient
of correlation between », and @ is the coefficient of multiple
corvelation between ® and the set af vaviables 2w, <+, Tm.
It may be represented b¥ 11.25...m. If the regression coefficient
of 7 on @ is L, the square of the standard deviation of
“—L@®isaf(1—rf, . ). But any constant multiple of @
15 a linear combination of T2y -+, Im, and by the definition
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of @ no other linear combination of a3, ..., x,, can give so
good an approximation to z, according to the least-square
criterion as @ itself. Hence ¥ must be that L =1, and the
standard deviation of x, — L@ is the standard deviation of
a—— @, already denoted Dy mi0..., 80 that

Fogom = A7 ) e
A\
Taken in conjunction with an equation previously obtairedy
for o2, . this shows that O
AN

L= 77 gy g = (I rid (L7l o) (1=rf g - (1 '\' Lot 28 177

X

4 relation from which the coefficient of mu;tiﬁ]e correlation
can be calculated. \\

e -
4. The geometry of frequency functions

Apart from the generality wibifshlithe:freseding account of
the application of geometry;f:b‘analysis possesses by virtue
of the fact that at the owtset the independent variable may
be one taking on a fighté* nunber, an-enumerable infinity, or
a continuous infinity of values, its substance can be given
still another setting: In the statistical case, if there are for
example jnst twe-Fanctions concerned, ay== 2(k) and g =y (&),
the formulasyifivolve the different vahies of % symmetrically,
and  are. t affected if the u pairs of mumbers (ax, yx) are
permutet, each pair by itself being kept inviolate. That is
to SEJ, the independent variable serves only to define the

~ &Qﬁdciat.ion of a value of z with a valué of y, anfi has no
\_further significanee of its own For dealing with large
numbers of observations, the problem may be idealized by
supposing that (within limits, perhaps) auy value of z may
be associated with amy value of y, but that some pairs of
values (z, y) occur oftener than others, to an extent indicated
by a frequency function (@ ¥} whose integral Over 3“5;
region of the =, y plane measires the_freqyency of pairs o
pbservations (x, y) falling ‘within that region. It = an@ ¥
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are measured as deviations from their respective means, this
fact is indicated by the conditions :

Ifmg:(a:, yjd:cdy = 0, _ Ify-gu{x, ydxdy == 0,

the integrals being extended over the range of definition of .
The squares of the standard deviations of » and ¢ are then

_. N
ff:c”go(x, ) dz dy Ify’go(x, y)dzdy O

J:reﬂ(x, Wizdy ‘ ff?(w, y)dm@x)
.\\ }

and the coefficient of correlation between th’éi}i' is -

- ffmy?(x,y)dx%;- )
[Forvenf (5 ]

To illnstrate the \fg\é’ﬁﬂm% rfjl%ﬁhrf%ﬁi%ﬁgé? funetions, let the
case of three dimensiomsbé“ehosen, Let ¢ (x, ¥, ) be a non-
negative continuous funétion of its three arguments, to be
regarded as a ﬁ'eq]{@scy function for the occurrence of the
set of values (%, 452) for three measured variables. To ob-
viate the necessity of convergence proofs, let it be supposed
that ¢ is_gdifferent from zero only over a finite domain of
three-dimehsional space. It may further be supposed without
essen@i@]ﬁdss of generality that the triple integral of ¢ over
the.\\s{oﬂ'lain where it does not vanish is egual to unity—in

"gl'it}eviated symbolism, f y == 1-—which means thai all
~ . frequencies are referred to the total number of cases as
" unit. The assumption that x, y, z are measured from their
arithmetic means is equivalent to the set of equations
fﬂ«“fp = fy? = fz;p = 0; no use will be made of these
equations, except to justify the statistical terminology em-
ployed. The squares of the standard deviations of T, Y €

are .fﬂ-"-*'f, J)ygﬂ", and fzﬁgv, since the quantity f@, which
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“would otherwise appear as denominator, is 1. The coefficient

of correlation between = and y is Imy tp/[[fx’qu} (J)y’go‘]m,
and the other coefficicnts of eorrelation are correspondingly
defined.

" As a first step toward the setting wp of a geometrical
representation, let auxiliary notation be introduced as follows:

4 12 .
X =z U X”qa] = 0y, JX?)‘.‘P = 4,

- {
Y =y—(4ich X, lf]” gﬂ] = Xy —= B, I".aql'x“——wf )
v -l %S
1;2 ¢
Z == z——(BftﬂJl—(C';r*)I [ VA ] }.-w f"l

In these formulas X, ¥, and Z, as we]l\as ¢, are to be
thought of as functlom, of z, y, ands) yand the integration
as performed with regcnd to these, \‘anables As the fune-
tional determinant of X, ¥, d%l Qb Qreing, s 1,
however, the integrals may gqhall) well be taken with regar d
to X, ¥, Z, if the limits of ‘mtegratmn are suitably adjusted,
or, what comes to the\,ghme thing (since each integrand is
identically zero exgept.over a finite region), if the integrals
are extended over the whole of space. As a function of
X, Y, Z, let gfry "y, ) be denoted Dby ¢ (X, Y, Z). Then,
with X I 7’ ms variables of integration,

fn'gul ---IXZWL —f’ Zy: = 0.

\‘\3 - g == X}'IU'Is = Y/, & = Zio,

7= oo ey (X, 1, 4), as
ied by ml{“lr 1, S1h
the relations

and let the quantity e: 7y 1 9 (x, 9,2
a function of the new variables, be represen
In terms.of &, 41, {1 a8 variables of integration,

JEI'?“‘ D, :J 5L @ :J pb @ =0
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are satisfied, together with the equations

133@1 -“-‘—‘Jq’»?f i, :Jl‘:i O =1,
while Iffr,p(x, ¥, 2)dxdydz = 1 goes over into

Jf,r@l (-Elr"l’l:gl)d‘gl d’h dg} = 1, @

L} . '\\

Hafitbmtob and ask+begtesl, are ANFAFWO
linear combinations of &, q,, &,, N\

O
Jabt bt gt @i+ bt at) @, — gyt s

Finally, for the sake of generality, ]et,\'é'i'\v,?,{.’ be any
variables expressible in terms of &, 7,9 £, vby means of a
(normalized) orthogonal transformations >Let @, (&, 7, &)
= @&, 9,8. As the determinant t‘the transformation is
=+ 1, the equations of the precedi{hﬁ\iiaragraph, including the
last one as tormulated with IE‘E@ SAElQUg, sets of coefficients

LL

involved in the transformatipn; give

Jero =[S0 — [110—o,
fo i~ fro[ea

the variables bf integration mow being &, 7,¢. The basis
of the geométrical interpretation is the possibility of finding
&9, L qs\ﬁnearly independent linear combinations of z, ¥, 2,
so that~these relations are satisfied.
The equations expressing &, 4, { in terms of z, ¥, ¢ mani-
festly are in fuct linearly independent, and «, y, z consequently
~Lan be linearly expressed in terms of &, 5, . Furthermore,
\/ apy linear combination of @, y, 2 can be similarly expressed.
Let

N 3

U= martfiytpne = 4,5+ B 7408
be any such combination. Then
[ vy izaya = [[[@s+ By +arroarayat
= Ai+Bi+ 0},
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It
V= asx+ By trez = A2§+_BSW+Csc

is any second combination of the same form,

ff UVe dodyds = Ay Ay+ B, By+ 0, 0.

Let P be the point with coirdinales (4;, By, C1), and Q) the
point (s, Bz, Ca), with reference to o system of rectungulafy,
ares in three dimensions, and let O be the origin. Then
J g and IV’ ¢, the variables of infegration being m,:y;i;;z, dre
the squares of the distances OF and 0Q, and PNY
2, \J

Jovs[[if o)l rellics

the coefjicient of correlation between U und TV, s the cosine
of the angle POQ. Through the meddion of the equations
expressing x, y, z in terms of Q’E,;a}‘,\é, each of the variables
£, Y: 2 and every ﬁ“ﬁ{”’wW&‘i{?ﬂﬁ@%ﬁ{r‘kﬁ?gfﬁ’% be associated
with a definite point in ﬂ:re&-dtme?mma)f spice, tn such @ way
that standard dezriationa&i’d’ coefficient of correlation have the
sume sort of geometrical weaning as before. From this begin-
ning the geometﬁcaﬂ\\stmcture of the theory of correlation
can be built uf \'@ohg the lines previonsly followed.

sVector analysis in function space
There\is urther scope for the application of simple geometric
ideag it functional analysis, where the compiete picture calls
ff}(\awgeometry of infinitely many dimensions. For a single
~,,\~iﬁustration (discussed by Lévy, Legons damalyse fonctionnelle,
s\ Paris, 1922, pp. 127-198), consider the integral

8 = 8 :J:F(w? ¥ yr) d:{”

arbitrary function of , ¥ = Ffl),
on of its arguments. Not to enter
ons of continuity, let it be
at appear in the discnssion
are needed to justify

where y is a (suitably)
and F is a given functi
into details with regard to guesti
assumed that all the functions th
have as many continuous derivatives as
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the operations performed. If y is looked upon as a point in
a function space of infinitely many dimensions, or as a vector
from the origin to the point, 2(y) is a sealar point function
in that space. Subject to the appropriate conditions of diffe-
rentiability, let (z) be an arbitrary function vanishing at
g and at b, and k an arbitrary constant. The familiar process
of differentiation gives '

~

d ’b . £ i 4 ’ ' \
[E'k_ L (?I+h"f)]h__ = J nFy (e y, )+ 7 Fy (9, y)].dw\

== I [Fy(w; e y’) Fy (xss?}‘y }] d")
o

the ‘last expression resulting from an mtegraﬁan by parts
performed on the second term in the braekets, with use
of the faet that #{a) = 7{(§) = 0. \Let the function

Fy—{(d/dz)F, be denoted by ¢ (a:l Then the expression
for the derivative may be abbrevia’ced to I:r;godx, or, in
a notation prewously“ﬁmh}ggﬂ.,bﬁqry)@rg%e variation A7 may
be regarded as an 1nﬁn1tes:mal»veétor increment of the vector ¥
in function space, of geoméﬁ'ib magnitade A(y-3)¥2. If the
increment of £ is divided by this quantity, instead of 7.
passage to the lmit\\gives a directional derévative in the
direction of the ¥eetor 4. Its value is (y-¢)/(y-4)¥% But
thiz can be written in the form

AS
\, (rp 9})”2 J,} ?)(1?2 (i) g})ll"“ ¥
%ch it appears that the directional derivative in the

da'm: ion g is equal to the quantity (¢ - )12 multiplied by the

i tbsme of the angle between the vectors 4 and ¢, being greatest
Cwhen 9 i collinear with w. The “functional derivative” ¢,
comsidered as a vector in functﬁon space, thus has the characier
of & gradieni of the scalar point function 2.

Tlfe funetional derivative can also be obtained formally
after the analogy of the ordinary representation of a gradient
in terms of a rectangular coordinate system. Let it be
supposed now that y — F(z) itself vanishes at the ends of
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the interval (a, §), and that it is expanded in a series of
normalized orthogonal functions wu (), each of whick likewise
vanishes at the ends of the interval, in the form

G = ag @)t aeus @+

Tet it be assumed further that this serjes admits differen-
tiation term by term. The integral £ is a function of the
infinitely many variables (@, s, ---), the codrdinates of the A\
point ¥ with respect to a set of rectangular axes in space))

of an ennmerable infinity of dimensions, The derivative ab L

%
7 %3

with regard to ax is LY
ol 3 .’t\
J o Flr, y, y’} da X ‘,‘\

a

t )
= [ e, v ) o)+ By oy Pk ]

b a4 N
O Ty e 1 ) LAL
W :&%rﬁa uJ gbl'ary .org.in

b 3
— [My@m@da. &

This is the Fourier coef{ie'\éﬁt of w(x) with respect to wx(x).
The cxpression ,~~\\
AN SR

= (e
K=1 Ok ()

for a vector hdbing the componenl 812/ dax in the direction
af the carge@séhdéng cobrdinate axis is the formal expansion
of the Muwictional derivative ¢ according fo the orthogonal
system ).

:ﬁn'exposiﬁun of other elementary developments of the
<§'ﬁt‘l’t@r analysis of function space, rendered concrete hy the
{ise of theorems on the convergence and degree of convergence
of certain expansions in series of orthogonal functions, has
been given by the author elsewhere (Annals of Mathematics, (2},
yol. 27 (1926), pp. 551-567; Bulletin of the American Mathe-
matical Soeiety, vol. 32 (1926}, pp. 641--643).
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